Publication Number 420306319-001A
Order No. 420306319-001

November 1980

STARPLEX"™

NSC Tiny BASIC
User's Manual

©1980 National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051

REVISION

REVISION RECORD

RELEASE DATE SUMMARY OF CHALYSES
11/80 First Release.

NSC Tiny BASIC, User's Manual
Publication No. 420306319-001

ii

Table of Contents

SECTION I

Paqe

Charter |
l.‘ Br!nqlnq UD The INSBG?B Systﬂm.onn.c..o.o.osn..o-....l‘;

l.z Bﬂud Rates...?.....l..llI..........'.‘...O...l.ll’..- -
Chapter 2
2.' Introduction....l.....l..l.....l.l.!..‘.l‘.......l..ll-s

Chapter 3

Introduction.......................-...-.............‘-7

-ITY/CRT Teminal...l........‘.......ll.l...l...l.....l-a

3901HN1DQ InStrUCtionsoo—oooo.o.-.-.ncq-.--o-cooooooo!-'@
Start UDI..........'..‘...‘...'.Q......l‘...........||_|m
The Print InstruCtion..-...............-.............l-ll
Usina The Computer As A CalCculAtOr.ceeevessevencsncasl=13
Use Of Parentheses...........-.......--..............l-l7

Miqtakes.'.I.......II...".......-...........--..-..-I—Zq

Wwwbrcw W Wi
LI T

VNN BN —

ExerciSESI...........'Il.‘.‘....ll.l..’.........IIC..I_?-I

Chanter 4

var‘iables....-...........-........-........'...'.....1—23
ExerCisesooooooooo-o-oooootcoooo.oo-o--.--'.u---uo---"25
The Stored Proqram....-.-......-.-.--.....-....-.-o..|—26
EXerCiSeS ieansssssoesssscsnscsssosavevessssssssnasnsaal=20
Thﬁ - Go TO - statement-c.-cooooooo'ccoo.oc--cooo--ool-Bg
The = INPUT — Statementiceessccccccoccacsscnssssnsnsesl =32
EXerCiSe, cuuecrsovovessnsnsnsesesosnsssconasssansasccnsesl =33
Informative Printing.c.iccceccrerscscscctosserossancaneslt=34
Multiple Statements Per Line...cceeccvscescscocccnsssel=36

Exerclses.....‘..I.........l..'..........‘.‘.........|—38

b bhbbhbbobbhhpi
e &4 & & ® @
O DN AN -

Chapter 5

Bits And thes....-..loo-..oo-o...oo.o.-.-...-c'co.uo|-39
ExerC1SES-.........................‘.................|-4a
“emorv ADOY eSS s uusenocsesssasnseacsotsansravscsssnsesncsl =47
HexadECIMBI Number SVStGM.--...................-..--.|~4q
"Ore About Hﬁ!ﬂdEC1MBI...-.---.-..-..................1-43

Exerclse.-..Q.I.I....Q........-...................'..|-48

(N R NE R) &)
[] [] [] L] [] []
A WN —

Chanter 6

The IF StatQMEntooooo-ooaocoic..-oonoo.o.ooo.o--.oo-olqg
Exercise-...."....'..‘.-............l..ll...l'.l—S'
A More COMDGCt PTOOTam....o-.....-.........-.........|-56
Random Numbers And Computer GAmMeS..ceescceccccsscccssl=60

EXercise.ccccecscoccacoescscvssscccanssnsssssssscssnscasl—6l

[« 38 Wo e Yo
e s s s 0
N bwh —

TABL

Chanter 7

e e B’ B N IR
[]
WOV BN -

Chapter 8

XMV TD
s 4 o s s % 8

~O BNy —-

Chapter @

D0 OO0
By -

Chanter 10
X7, 0
14,2
18.3

17,2
138.5

SECTION 11
Chanter |
Pt

Chanter 2

.
DO Ny —

s % 9

PNIPI NI NN = e s ot s ot s s o

* & 9 @
Bla iy -

NN NNNN YN VU NI Y
.

variablesﬂ.. [B BE B I BN BB B SN BE BN BN BE B K BN B L BE BN N BE BE BN N RN BN N IR BN BN BN BL BN B BE BN N)

FE OF CONTENIS (Cont-’d.} Faqge

proqram mes..‘........."....‘.I.............I-63

Exqrcise..-......-.....---.--.-..............-o.---.-|-65
IF LOODSOIQI...l'.......‘..............l........000001-66
Fxprcises............‘..................'..".‘.'...'1-0;1
FOR NEXT LOODSOQ.I....IOI..CO!'C.'.....!".-......'.ll-ég

Exejmises......l................'.l....!.‘...........‘h-”

The‘ém qtatemeht......‘........ ..l.........'.....IO..}-‘73

S!Jbroutines--..-..‘-.............-.................‘.I.-V’?
LINV- Inqtr'ICtion * 8 s 8aseasQ.......-.......-I-To

DFLAYUIU..III..l......l..'........'.lI...............'-Rq

The ON Sta te“ent..‘.......-..'. LEE RN AR B BN BN B B BN IR N B R .'....'-p"
Tt‘lﬂ, STAT Function B S FSD AT SIS RE SN PR e s asP e ..I—R?
MUItIDFOCeSSinO, INC ‘X). DEC (X)oon..aqococnnaouauu.l”qj

CLEALEQQQ..-C..-C.....-l.................I..l.........l-RB

MQmorV OrqanizationODQ..loo.-ooouo--.o.-coiltltcoo-o-'“gs
TOP Location..'......D..l.'.........O..O.I.l.‘.......i-g-l
Strinns OF CharACt orS seeeescossssccsnossncsvsnssssaasal~07

FXPTriqﬁoan..-..--.--..------.o--oo---o-....--o.-.-.al*04

Interfacing Other NDevices To NSC Tiny BASIC cescenseesl =07
HarAware Intﬂrface.........-.......................-.I-QR
Example System LFD FlashPr . cesesesssassasccsncncsssssl—123
Pro(’rqmminc Thp Ci"cuit....l........I.'...I.....‘....'-lql

ExerciseSI.......l......'.........‘.l......-.........I—‘”?

!ntroductionl..’-l.-.......‘.............-..'..I.....D-B

LanOUHQP Faneqqlonq..........---..--............--..

CONStaNtS . ceeevsvssvesnsssocnsoanssassassasasssssenssa
Rnlational Ooeratorg'.l'..-.‘..'.........'-......'...
Arithmetic OneratOrS.cicesresscaccscsssccssenssnssnnse
Logical Operators.siacccescssccacscscstaccancncnnecsas
Loqiral Ann..........‘.‘.-....ﬂ..I...................
LGQ!CaI (D sesvsssssnecssssaassansssadissnsanscscncany?”
Loqiral NOT........‘....................‘......'.....

F'Jnctionq-.".....'...."...................".I.‘...

800D (a,b) Functionuooontoooo-oo--ooo.onootttooocoonco
RND (a,bD) FUNCLION,. cscestecsvccsssncssnscsnsssscssnnss
STAT FunCtionnonucca---.tcotou-oco.coonlc.acoonoooloo
Status ReqiﬁtEr Rit Functlons.................-..-...?

v‘U\J\)V\J\JU\U\JV

]
x)n‘n~44~4\:o:>u1m\nu1w

JM

(¥

» e
(e e

Wiy — 33

e & & » & a4 & & & » 2+ »

4. a2 =
Al —

NVVNVNOUNYNOUVUNNNVONNN N YV UYN VDY O N
8L -

» & ® & 9 8 & » = 8 . » 3 0 ® * 9 & 4 & & 9 &2 5 9 & B *

~NNNNYODROOIITTNA WO WD WW W W i W oN

TARLF OF CONTENTS (Cont’d.)

Prae

TOP Function.-......................-................2-|ﬂ
INC (X) And DFC (X) FUnctionsS.scvessaccsercccaccsncas?=l?
StatementS..ceeeceacssosscesenscsasssvervssscnsssssnnss —|P
INPUT Stateﬁent-no.oono--oo--a.o-...o-ooc.-o-ooc-o--.?-lq
PRINT Statement (Outout)........--..-...-........----7‘*i
LFT Statﬂmgnt (lssicnment).........--................?-l?
The 0 TO Statement cveessescesssensrncescncsosnssssasssl—|?
GOSUR/RFETURN StatementsS..cececasssscsscsvoscsscsnssrel=i?
IF/THEN StALEMENt cenevsossssosnsarsosssssssavencnsscsescd~13
DO/UNTIL StatementS .cecessscssccscsscssssseorsscnsessase =13
FOR/ZNEXT StaAtemeENtS . vesaesnacsvsessosstsssasncsassancess~|d
LINK Statement ve.eeesascassccnanessssnsnssnsassscnsanas—i4d
ON Statement..................-.--.--................?—|5
STOP Statement........-oo......-.--.---..............?-|5
DELAY Statement . vvccencscerenssnsassssssssncncsnssesas’—lO
CLFAQ Statementc....‘q......l..l.tl.t.o...n..n.-..O..?-lé
lndlrect OoeratOr...'..'.....'.............'.........p-lﬁ
Multionle Staterents On A Line....veececvennncacrnnaaa?2=l7
String HANAlINO.sseesetsocssssasvonnstsssasccsecansas?=IB
String QULPUL L. cvsevessssccsscaasssnsssaansscssassneanr—iB
Strinq Aqqiqnment--.-o-....--......-..-..............7-'3
Strinq MOVE .eesnseassansossnssssnssnesssnscsacssnsacs 5
String FyAmDleg. . ciceieictsocsccssssscascssacnnccsoseasl=l®
COMMHHdC...-...o....-..--............................7—19
NEW expr'..‘...................‘.'.....-.............;‘."Q
RUN..-.--.--.-...-..-...-..-..........--......--.....?—19
CONT-..ooo.-...loo.o-.o!.l..oo.oi....cooaoco.-'o.o..op-?ﬂ

LIST (eyr)r)...-.......l-......'.l'l.'l!..l.tt..ﬁc.oooz‘-p,q

SFCTION 111

~haoter |
l.
L3
e
[

1.

-~ ;N o N -

l.
.
Charter ?2

2.1
2.2
2.3

Wy 0 b

NN N

Int*odUCtion.......--..-...........-................3“3
An NSC Tiny BASIC Example System, Functior=zl]
_ Specification..c.eieee3-%

Hardware Desian Of A Swmall INSR2A73=-Based Svstem ,,...3=9
Addressina Reauirements/Capabilities Of Fach

System Component ,.....3-12
Memory Maooina Constraints For All Svstem

Comnonents...cescesnesd=1l3
SVStem Gﬂneratpd lntﬁrr”ntq-olooonooocno---oo--.ouan3*|3
RS-?3?/Current LOOD Interfacq.....-.................3-|6

MM??Ié EPRO“ Prﬁqrﬂmmlng SOfthrﬂ...-................3-77
COPY Command...............‘............I......ll.'..J-I'?
pROGQAM Command..............-...................-...3’1q
VERIFY COMMAN . osecenssessssssscsssssncsnsessasesncassd—l?
ERASF CHECK Cnmmand..................................3—19
FILL CONmand........-.-..o--.........................3-7m
DUMP Command.............-...........................3-?ﬂ
LOAD Conmandooo-ooo-n-o.otoo.n-o--.lc-.-ooooo.o-oo-ooB“?I

TABLF OF CONTENTS (Cont“’d.)
Paqge

Chapter 3

3.1 Loading The FPROM Programming Software Into FPROM,..,,3-03
3.2 Loading NSC Tiny BASIC Programs Into PAM.ccecesseanaeld~23
3.3 Using The EPROM Programming Sof tware To Program

MM2T716 EPPOMS esseseasi=23

vi

Section 1

du

CHAPTER 1
l.1 Bringing Uo The INSB?73 System

All the examoies Are based around the example system shown in Section
3, Figure 1-4,

For those of you who have designed your own system, with heln from
Section 3 of this manual, it is assumed that vou have the experience
to internret the following instructions to suit your own system, The
sequence helow tells how to hook the standard N5C Tiny BASIC card shewr
in Section 3, Fiaure 1~4, to A nower sunnly and TTY or CHT to aqet it

runnina,
Things needed:

Power Suoply? +5,
~t2V (For serfal communications)

Optionally +25 (For PROM oroarammer)

A pDower supoly cable can be connected directly to the hoard at
the Pt mnunting, or stake nins can be inserted and the power
sunnly can bhe connected throuah a suitable connector, i,e.,
MOLEX MXI=-¢ 6471, A cable or connector is attacher to Power

Supoly in the following orders

CONDUCTOR PIN# i 2 3 4

VOLTAGF +5 -2 +25 GND

If yvou’re usinqg a TTY, it must be connected for 2¢/mA current
loon, as Jdescribed in its own manual, and will connect to the
edge connector fingers in the following manner:

PIN# ! 2 3 4 5 6

_____ -— o - 3 -

SIGNAL XNT+ | XNT-| RCV+ | RCV- RD RLY+| RD RLY-

Pin numbers are etched onto the board, remember that Pin 6
is the one closest to the edge of the card on the side with
the comnonenets.

If you’re using a CRT terminal, you should hook it up with a
standard MALE-MALFE cable, (National’s 6@1335491-241 will do

fust fine), to the RS5-~232 (D-tyne) connector on the board.
Make sure your terminal is set to RS5-232 (if that’s a switch
selectable opntion, if not, just assume it is an RS5-232 termin-
al)s and make certain unper case and full duclex are selected,

1.2 Baud Rates
Generally, the hioher the Baud Rate, the better, as it means less

waiting time for yout however, if you are using a TITY vou have no
choice. The Baud Rate must be set to 1@,

1-3

The way you set the Baud Rate is with the two tumners EIB~F19, T146-F}7,
Ne can call EIB-F19¢ D@, and EI6-FE17 D}, Set the Baud Rate on a
terminal to the highest rate, or 48779, which- ever is lower, set the
jumpers to match it as shown in the diagram helow. A "1 sianifies
that the jumoer iIs missing, a A" means that {t is installed,

F16=-F17 EIR-EI9

N2 D1
e | o | o
EC o | r
20 | 1 | o
KN N

After you have done all of this, and double checked it, connect the
board to the CRT terminal or TIY, warm up the terminal, hook up the
nower supnly, then turn on the nower.

If all went well, you should aet a riaht pointing caret (>) oromot. -

Push the RESET button and the oromnt (>) should aonear aagain, You are
now reaiy to beqln using vour AA73 system,

1-4 -

CHAPTER 2
2.! Introduction

The INSB273 is a sinale-chin comnuter that Airectly executes NSO Tinv
BASIC, a high—level lanquage. Writino orograms in NSC Tiny RASIC
offers tne following advantages over writing orograms in assembly
langiraget

¢ Proaramsuwritten in NSC Tiny BASIC eliminate the need for memory
consuming® Fdi tor, Assembler Monitor/Dehua nrograms. All of these
functfons are built in.

® Programs may be written and dehuagged usina a small, inexoensive
system, Purchase of an exnensive develonment system {s nnt
reguired,

® Pronram dehuaaina is fast and <imnle, Program execution may be
susoen-ied, variahles and other narameters examined/altered, errors
corrected, and execution resumed at the point where it was
susnenderd - all without the need tn reassamble or reload the
program, (NSC Tiny BRASIC programs do not have to he assembled,)

e Programs can be written in one tanth the time of equivalent assembly
lancuane proarams due to the power of the NSC Tiny BASIC lanquaasa,
its Enalish-like simolicity and bullt in edit/debuo canability. "
Programs are also easy to maintain because they are self documenting.

e Proarams are relncatablel they may be loaded and executed anvwhere in
memory without modification.

e Program memory can he auicklv checked for valid code because NSC Tiny
BASIC oronrams are stored as a seaguence of ASCII characters,
(Executable assemhly langquage proarams Aare considerably more
11 fficult to check bhecause they are stored in memory as a sequence of
binary numbers),

NSC Tiny BASIC was Adesigned for use on the [NSBA73 single-chip micro-
fnterpreter, a oroduct of National Semiconductor Cornnration, NSC
Tiny BASIC is a simolified version of the computer lanquage, BASIC,
"Regfmners All=nuroposs Symbolic Instruction Corde?, develoned by

Dr. John Kemeny and Dr. Thomas Kurtz at Dartmouth College In 1943,
BASIC hasg become the "Peonle’es Comnuter Lanaquage" because it is
easy-to-learn and easy-to-use by 0e0ple who are not comniiter
scientists or orofessional orogrammers, The users of BASIC are
enafneers, technicifans, sclentists, statisticians, business peonle,
hohbvists, teachers, colleqge students, and a vast multitiude of
vyouna nennle in elementary and secondary schools.

The oriqinal NSC Tiny BASIC was dasiagned for aoplications such as

integer Arithmetic nroblems, comnuter games and teaching beninners

how to nrnaram comnuters., NSC Tiny BASIC has extended canahilitles

:?at make it a nowerfyl desinn tonl for developing control Aaobplica-
ons.

1.5

Information on NIBL uopon which NSC Tiny BASIC was first oublished in
People’s Comouter Company, Volume 3, Number 4 (March 1975) and Volume
4, Number | (July 1975), The bast source of information on Tiny RASIC
1s Dr. Dobb’s Journal of Computer Calisthenics and Orthodontia,
begTnnIng with Volume 1, Number 1 (January 1978) and continulna through
Sseveral issues,

This book is designed to help you teach yourself how to use NSC Tiny
BASIC and the INS8#73t it consists of three major sectionsst

SECTION 1t A primer Aesigned for self study, This self teaching
nrimer presents the elements of NSC Tiny BASIC in a step=by-sten
mannar. Jt is assumed that the reader has access to an INS8073-hased
system and will try out the examoles and exercises as thev are
oresented In the orimer, It {s also Aassumed that the rearder has no
orevious computer proaramming training or exoerience, but is
exnerienced {n alectronic hardware Adesian using non-comnuterized
technioues,

SFECTION 2t A quide that nrovides aquick reference to information for
peoDle who have worked throuagh the primer, or, who already know how to
program in some form of BASIC.

SFECTION 3t A descrintion of a2 tynical INSRA73 systemt detalls on

setting uo the comouter system and gettina NSC Tiny RASIC runmning,
Section 3 assumes that the reader has a orior knowlerdge of diqital
elrctronicst and, this section gives schematics and a descrintion
of an example RA73 NIRL-II demonstrator card,

CHAPTER3

2.1 Introduction

The INSB8A73 1s a Mtask-oriented microinteroreter, NSC Tiny BASIC is
the lanquage that instructs the system to oerform various and sundry
functions.

The use of microcomputers to control electronic, electrical and

elec tromechanical devices is very much an enaineer’s dream come true,
A computer works from a written out snecification of what the
completed device Is suoposed to do, This specification, written in
a very exact and unambiauous style, is called a proaram. As with
specifications and schematics there are conventions about exactly
how a program is to annear. This set of conventions 15 called a
language. The language used on this computer is a version of

BASIC called NSC Tiny BASIC,

When setting out a schematic for someone who is not un to vour back-

"ground in electronics, you have to spell everything out in more detail

than you would for a colleague who is rioht with you. Until a comnuter
knows as much as vou want {t to know, everything must be soelled out

in a meticulous and precise manner, 0Once these iInstructinons are
spelled out - that’s its the computer will henceforth 4o it rioght

every time,

Figure 3.1, INSRA73 Based System

1-7

3.2 TITY/CRT Terminal

You wil]l orobably be using a Model 33 Teletype or a CRT (Cathode-
Ray-Tuhe) terminal to communicate with your INS8A73. In the follow-
ina text, TTY (Teletype) and CRT (Cathode-Ray-Tube) are used inter-~

changeably.

The letters of the Roman alohabet and Arabic numerals were invented
lona before comnuters when nobody cared that the letter 0" looked
just like a zero. [t iIs, however, very imoortant for the comnuter to
tell them aparts therefore, the numeral zero is written as an "0«
with a slash through 1t (A), The letter 0" {s left alone. Most
Teletypes will orint the zero character with a slash and an 0¥
without A slasht check your teletyne to make sure it observes this
convention.,

When orogramminag, sometimes you will tyne to the computer, sometimes
the computer will type to you, When {t is the comnmuter’s turn,

it just goes ahead and tvyoes. When the comouter is ¥thinking" it
acts as if you were not there. When it is your turn to type the
computer prompts you by tynina the character “>" on the left marain
of the naner/screen, The right nointina caret (>) is called the
"srompt" character, After tynino the prompt, the computer will

wait patiently until you tyne something.

NSC Tiny BASIC recognizes only CAPITAL LETTFRSt lower case letters are
not used at all, (The Model 33 Teletvpe doesn’t have any lower case
[etters,) Your CRT may or may not have lower caset if {t does, switch
the upper/jowercase switch to upper case.

1-8

Fiqure 3.3 A Tvnical TTY

Figure 3.2. A Tynical CRT

1-9

3.3 Beginning Instructions

Think of something you know how to do like bicycling, skiina, playing
piano or designing circuitry. One thing is certains there are no
books Iin the world that can teach someone how to do any of these

things. Books can heln, but without getting on a blke, putting on
skis, practicing scales, or designing hundreds of circuits and trving

them out, a novice can’t do any of these things, Same way with
oroqramming,

The only way to learn orogramming is by doing it, With bicycling or
skiing you may end up with skinned shinst with orogramming you may
experience a dented eqo, People don’t like to be told they’re wrongs
unfortunately for the novice programmer, error messages are what he/she
will aet most frequently from the computer.

For your reference, the NSC Tiny BASIC FRROR CODF SUMMARY is listed
belows what ‘it means is that 1f NSC Tiny BASIC encounters an error
condition in RUN command mode, it will orint out ERROR followed by an
error number., FError numhers aret

Table 3-1, NSC Tiny BASIC Frror Code Summary

ERROR NBR. EXPLANATION

Out of memory

Statement used imorooerly

Unexpected character (after]legal statement)
Syntax error

Value (format) error

Fndihg gquote missing from string

GO target line does not exist

RETURN without previous GOSUB

Exoression nr FOR=-NEXT or DO-UNTIL nested too deenly
NEXT without orevious matchina FOR

UNTIL without nrevious DO

P2 Division by zero :

VDY ONDWN—

-

3.4 Start Up

Refore vou power-up, be certain that your system {s properly connected
and that the Baud Rate Selector is set, Once you have turned on your
INSBA73 system, the TTY or CRT will type a nrompt character (>} to
indicate that it is ready to beain, When vou are ready to enter a
nrogram with line numbers, type the foliowing:

>NEW #address (hexadecimal acddress location)
NEW

The above command (NEW #address, NEW} 1s used:

I. To prepare the computer for a new oroqgram with line numbers.

2. For initial power-up.

3, If you RFESET your system {n the middle of a programming session
you may have to use this cnmmand., Try to avoid this hecause you can
enasily lose all nroarams {n vour system’s memory.

4, If you wish to store several nroarams in memorv. Fach nrogram
wiill have a different hexadecimal address location.lfor~examoles

Program | = NEW #6003
NEW

Frogram 2 -~ NFEW #4857
NEW

The NEW (carriage return) command erases an old programs the LIST
command lists your nrogram and the RUN command runs your nrogram,

Importantt when you are finished tyoing/talking to the corputer, vou
signal by pressing the RFTURN key. This fndicates that vou are
finished with your turn,

Tyne vour name and then press the RETURN keys the following is what
should happen:

ERROR 4 The computer responds with FRROR 4, FERROKR 4 §s
listed in this chanter and in Anpemiix C under the
Error Coda Summary and is a "Syntax Error", This
1s because NSC Tiny BASIC does not recoanize your
name as a command,

> NSC Tiny BASIC then types a prompt (>) to let you
know it {5 still listening and that it is still vour
turn to communicate.

-

This {5 the first examnle of an error messaqge. It is the one you will
see most often, and it means only that vou have typerd somethina that
NSC Tiny BASIC doesn’t understand. NSC Tiny BASIC does not undarstand
vour name simply hecause it {s not in its repertory of commands,
Fxamine the following legal commands,

3.5 The Print Instruction

The computer gets jobs done by following fnstructions. If an in-
struction {s correctly tyoed, the comnuter will execute It immediate-
ly. (Khen a computer follows an instruction it 1Is said to obev,

or execute that instruction,) One of the most usefu]l instructions is
the one that tells the computer tc PRINT a desirerd result or message,

In English we say that antelopes have four legs, but we say that
#antelopes® has nine letters, One of the things we do by putting words

into auotes is to indicate that we are referring to the words
themselves and not thefr meanings. The computer uses auotes the same

way,

For example, suopose, In a boiler instellation that the computer is
monitoring the water level. If the level begins to get low (but not
low enough to warrant automatic shut down) you might want the comnuter
to orintt »Narning, the water level is low.,®, The instruction you
desire to give the comouter ist

>PRINT MNARNING, THE WATFR LEVEL IS LONW®

Don’t foraget to nress the RETURN button to make the computer execute
the instruction, .

You typet PRINT ®WARNING, THE WATER LEVEL IS LOW®
I'ne microinternreter typest WARNING, THF WATFR LEVEL IS LOW

NSC Tiny BASIC tyoed what you told it to tyoe: note that the message
was enclosed In aouotation marks, hut they were not orinted,

Supnose that the ooerator in the boiler installation was away from the
terminal, or taking a nao, or having a coffee break, In any of these
instances he may not see the warning message, The TTY has a bell which
may be used as an alarm, (Other terminals may have different audible
Alarms - a click, been, buzz etc.) To sound the bell, hold down the key
marked CTRL, CNTRL or CONTROL and, while holding 1t dnwn, nress the G
key. On most TTYs, the G key has the word BRELL on it as a reminder,

v e de g Fede i de S ek e e o e e v Je vk o e e e de v de e o ke o o il

* *
* To rinao the bell, hold CTRL Aown and *
* press G *
* *

ek o o e g & ok ek Fe e ik 3 sk ook ik ek e st ok ok Sk ik ok ke

)

Hold the CTRL key down and press the G key several timest this will
allow you to ring the bell several times. You will note that the
bells are heard vet nothing is printed on the TTY, (Aooendix shows
other non-nrinting characters which may be useful.)

Bells (QONTROL/G) can be included in a PRINT instruction. Let’s
use the example of the boiler installation again and print the same
warning message, only this time add the bell to be certain that the
ooerator knows there’s an important messaget

You tynet
PRINT “WARNING, WATER LEVEL IS LOW (CTRL GGGGGG)Y

Don“’t forget to poress the RETURN key so that NSC Tiny BASIC knows you
are through with your instruction,

NSC Tiny BASIC tynest
WARNING, WATER LEVEL IS LOW and then rings the bell six times,

3.6 Using The Computer As A Calculator -
NSC Tinv BRASIC can do integer arithmetic. Try the following examonles

on your INSBA73. Remember to nress the RETURN to finish a line of
typing.

ADDITION

You tvnet PRINT 2+3 Use M4t to add,
NSC Tiny BASIC tvpest 5

SURTRACTION

You typet PRINT 7-4 Use "8 to subtract.
NSC Tiny BASIC tyoest 3

MULTIPLICATION

You typet PRINT 4x7 ‘' Use #4 to multinly.
NSC Tiny BASIC typest 28

DIVISION

You tvnes PRINT 48/6 Use W/8 to divide,
NSC Tiny BASIC tvoes: B

If you made no typing errors, the above four examoles should actually
apoear on your TIY page as follows: '

>PRINT 2+3 The nrompts (>) were typed by NSC Tiny RASIC
5

>PRINT 7-4
3

>PRINT 47
28

>PRINT 48/6
8

>

Now try the follewing divisions,

>PRINT 23/4
5

*PRINT 3,2
i

>PRINT 4/5
@

Is NSC Tiny BASIC oiving wrong answers? No, [t is simply doina
integer arithmetic. In division, NSC Tiny BASIC oproduces the integer
sart of the quotient,

Using the first example above, »PRINT 23/4, this i1s what happenss

5 Quotient. This is what you get when you
4 / 23 tell NSC Tiny BASICt PRINT 2374
20
Remainder. You will be instructed later
on In this manual how to compute the
- remainder,

Most industrial control apolications, as well as tasks such as word
processing and even the programs that make this lanquage work, need
only integers. A valve in a refinery may need to be set to one of a
hundred positions (many annlications only require resolution of two
positions - opened and closed), These hundred nositions can be
represented by the integers 7 to 18 with @ being closed, 5% being
half opened, and 1#® allowinag full flow. '

1-14

In NSC Tinv BASIC, integers can range between the limits of -32768B

and +32767, inclusive, This allows any measurement or control to be
accurate to one part in over 65,73, Few electrical or merchanical
devices In control systems require more accuracy. Yet, by annrooriate
orogramming, Qreater accuracy can be obtained {f it is necessary,

A good way to learn more abnut how NSC Tiny BASIC does arithmetic is
to use it as an inteqger desk calculator. As with any desk
calculator, it {s possible to overflow if you calculate a number too

large or small.
NSC Tiny BASIC handles the problem in two wayst

. If you try to tyoe, not calculate but type, a number greater than
32767 or less than -32767, NSC Tiny BASIC will print an error
message. For examplet

*PRINT 32768
ERROR 5 Error 5 = Vaiue {(format) error

>PRINT ~32768
ERROR 5 Error 5 = Value (format) error

2. If vou calculate a number outside of this range, no error message
will be generatedt the numbers just ¥wrap around®, This method
of handling overflow is handy on some occasions, bhut distressing
at other times, For examplet

>PRINT 32766+1
32767 This is the expected answer

SPRINT 32767+1
=32768 This {s NOT the expected answer

SPRINT =32767-1
-32768 This 1s the exnected answer

*PRINT -32767=2
32767 This {s NOT the expected answer

>PRINT -32768~|
ERROR 5 Remember, you can’t tvoe —32768

Think of NSC Tiny BASIC numbers being arranged in a circlets

-1 & 1
-2 2
-3 3
-4 4
~5 5
~32764 32764
~32765 32765
~32766 32766
-32767 32767
~-32768

From the circle vou can see that 32765+7 = 32764, (Moving In a
clockwise direction start at 32765 and count off seven placess
you should end1 un at =32764,) Try it on your system,

PRINT 32765+7 :
=-32764 Correct

To subtract., move in a counter-clockwise direction, For examnle,
-32766~5 = 32765. Again, verify this on your system.

NOTE s

PRINT =32766~5
32765

NSC Tiny BASIC didn’t orint the %“correct® answer (~32771)
because =32771 is less than -32768, Calculated values will be
correct only 1{f the correct value is In the ranqge of =32768 to
32767, inclusive.

Up to this point you have been shown simple problems with one
ooeration. The following examples are a bit more complicated, The
formal rules for how exnressions are evaluated are {n this chanter In
section 3.7% vou will understand them better if vou exoeriment on
these examples first.

»PRINT 2%x3+4
A

>PRINT 2%3-4
2

>PRINT 2#3+4%5
26

>PRINT 2%3-4%5
-4

>PRINT 2#3%445%6
720

e

»PRINT 2%3%4%S%6«7
5040

SPHRINT 223%4%5x56¢TwR

-25216 The correct answer is 42328, too big
for NSC Tiny BASIC. NSC Tiny BASIC
Adoes not tell vou that an incorrect
answer has occurred,

If you use only +, ~ and ®, NSC Tiny BASIC will give correct results
unless the true result is less than =32748 or areater than 32767.
Try some division problemst
PRINT 72072/374/5/6
) Correct. 720/2 = 360, 360/3 = 120,
120/4 = 36, 3A/5 = 6, and 6/6 = |,

SPRINT t/2+1/3+1/4

4 The integer ouotients are mll zero.
A+A+3 = A,

>PRINT 2/3x100%

7 Incorrect. Two thirds of 1327 does
not give zero. Try it 2 different
wav,

>PRINT 1000%x2/3
666 Correct.

3.7 The Use of Parentheses

The following examoles {llustrate the use of parentheses in numerical
expressions., Verify them on your INS8973,

>PRINT 2%(3+4)
I4

>PRINT (243)%(4+5)
45

S>PRINT (24343} #8+7
19

>PRINT (47-23)/6
4

>PRINT (2+3)/(4+45)
f

NSC Tiny BASIC does not tell you that a2 comnuted answer 1s Incorrect
because the true result is outside the range, =-32768 to 32767. For
examplet

>PRINT 100@3%x({39-72)
-32536 The correct answer i{s 33600

An incorrect result can occur even if the true result is in NSC Tiny
BASIC“s range.: This will haopen 1if an i{ntermediate calculation lies
outside the range -32768 to 32767. FfFor examplet

>PRINT 201 %20a/2
-12668 The correct answer is 20100,

In the above example you got an incorrect result because NSC Tiny
BASIC first comouted 20i*2%3 which has a true result of 4020 and
this fs outside its ranae. NSC Tiny BASIC obhtained =-25336 for this
result, then divided by 2.

SPRINT ?23lx(200/2)
291 32 Correct.

Parentheses were used to cause NSC Tiny BASIC to first comoute 200/2,
then to multiply by 201,

3.7 Rules For Fvaluatino Exnressions
Division by zero (@) stops evervthing and gives the messaget
ERROR 12
Expressions are evaluated (in the absence of narentheses) by doing
all multipnlications and divisions from left to right. After they are
comnleted Aall ardditions and subtractions are done, again, from left

to right., Any fractional results from a division are simpoly ignored
{truncated), The results are not rounded. For examnles

2/3%1 300

is evaluated to zern, since the integer part of 2/3 1s zero, and zero
times 1022 {5 zevro., PRuts

| OAA*2/3

evaluates to 666 because 130@*x2 is 2020 and 2000/3 is 666.66665, (the
fractional sixes to the right of the decimal point are dropoed).

The expression 446/2+43 evaluates to | because the division is Aone
first yielding 4+3+3, and then the additions are done from left to
right. In other words, 4+6/3+3 15 evaluateds

446/2+3 = 44343 = 7+3 = |0

1-18

I

‘The order in which ooerations are done is shown below in stjll

another way., The numbers in the circles show the ordert

446/2+43
Parentheses override the normal rules. Anything inside a pair of
narentheses gets evaluated before that which {s outside, This is the
normal algebraic convention., Thust
(446)/(2+3)
evaluates to 2, thusly:t (448)/(2+3) = 1Aa/(2+3) = |0/5 =

Shown helow is5 the order {n which operations are done by the use of
numbers In circles,

(4+46) /7(2+3)

Parentheses may he nested as needed, This means you can have paren-
theses within narentheses,

12/2%1 2/2%3 = 6% 2/2%3 = 72/2%3 = 36% 3 = |AB
127025 12/7¢2%3))) = 12/(2%(12/6)) = 12/(2%2) = 12/4 = 3
Or, using the circles?

79 vy 3

12/2%) 2/72%3 . Vversus 12/7(2%012/(2%3)))

Check these in your head, and then on the computer,

Good programming practice avalds exnressions like 12/72%12/2%3 as they
are hard to read., It is clearer (and thus less error orone) to write
((12/72%12)/2%3) using spacing and narentheses for clarity even if
they are not technically necessary.

Algebraic notation is used in NISL, mordified as necessarvy to fit on a
single line and, of course, to use prooer NSC Tiny BASIC arithmetic
symbol s,

ALGERRAIC EXPRESSION NSC TINY BASIC FXPRESSION
36 36/(9+3)
9 + 3
12 x 58 (12458)/7(7%25)
7 x 25
128 x 60 (120%60)/7(| 20+60))
120 + 60

There are limits to the orders of orecedence aliowed in any one line,
These, however, are hard to exnlain, or even find, The rule of thumb
is that if you get an “ERROR 9" occurring after a oarticularly long
exoression, try to break that expression iInto two or more parts.

3.8 Mistakes

Perhaps the deadliest assumption in engineering design is that any-
body using the eguipment will use it correctly. NSC Tiny BASIC
orovides error messages after it is too late. If you are working on
a TTY and are lucky enouch to catch yourself {n the middle of a
statement, having just tyoed an incorrect character, you do not have
to throw away the good part and retype the whole thing.

The first mistake correcting facility is a sort of backsoace. Say
that vou typed YPRINR" instead of “PRINT¥, If, after the "R wou

held down the SHIFT key and nressad the letter 0% you would get a left
oointing arrow or underline. This means that the last letter you

tyoed (the *R¥) {s deleted and vou can now tvoe the correct letter
("T"), Try 1t a few times,

>PRINR 2+3
ERROR 4 PRINT missoelled
»PRINR_T 2+3 After tyning R, tyoe _(SHIFT 0), which

erases the R, Then type the rest of the
1ine., Everything is OK to NSC Tiny BASIC,
althouah 1t lonks wrong on your TTY.

The backspace feature can be used repeatedly. [t is w to vou to
keep track of just how many letters have been obliterated,

>PRINT 3+2___5%9R8___5
25

4 true backspace feature is provided for use with CRT terminals,
Pressing the backspace key (or Control H) will erase the last
character from the screen and memory.

If you want to cancel an incorrect line entry without having to wait
for the error message, hold the CTRL butteon and strike the letter "y»,
NSC Tiny BASIC will tyoe “U, do a carriage return line feed, then it
will tyne the promnt (»),

>TYPE AN INCORRRCT LINE FNTRY AND PRESS “RETURN" and get
ERROR 4

>

>TYPE AN INCORRECT LINE ENTRY AND PRESS CONTROL U*U

> & No syntax error.

If you are lucky enough to be using a CRT, just backspace and retyoe
the offending character,

1-20

3.9 Exerclses
Complete the followings

!« In NSC Tiny BASIC, numbers are integers in the range
to + Inclusive,

2. If you tvoer PRINT “TUKRN SWITCH NO 3 ON¥
NSC Tiny BASIC will typet

3. If you tyoes PRINT 7«7
NSC Tiny BASIC will typets

4, If you tvoet CNHOMFE ON NS TINY BASIC. GFT WITH IT!

NSC Tiny BASIC will type:

Do the following in your heat or with paner and nencil, as you think
NSC Tiny BASIC would Ao them, Then, verify vour answers,

Be 2%344%5+46%7 = —_—

6. 123x(42/127) =

7. |173%%] 37

R. 22/7%17300

0., 1000422/7

You will find the answers to these exercise auestions in Annendix A.

1-21

CHAPTER 4

4.1 Variables
If, instead of tyninag:

PRINT 12A/74/5
vou typed?

A=1200/4/5
the result (which is 6, as the exnression iIs evaluated from lert
to right) would be given the name A, A is called a variable, The
Instructions

PRINT A

. []
would result Iin the value 6 being orinted. The following {5 the en-
tire sequence of instructions as they might anpear on your TTY naage
or CRT screen,)

>PRINT 120/4/5
6

>A=|2/4/5
>PRINT A
6

Try another one.

>A=T7 The value 7 was assigned to the variable
A and the value 5 to the variable B,
»B=5 Since A=7 and B=5, A+B will be 2.
»PRINT A+B
12

NSC Tiny BASIC now is instructed to know A=7 and B=5,

>PRINT A#B
35 A=T7 times B=5 = 35

In NSC Tiny BASIC there are 26 variables, the letters of the alphabet
A through Z. Fach variable may be best considered as a plaeonhole In
which exactiy one number can be stored. When {t is stated that
K=4325, it means to replace any prior value that K may have had with
the new value 4325, The old value is lost. The instruction G=T
tells the computer to make a copy of whatever value is Iin T and to
place that copy in nigeonhole G. In computer {argon the pigeonholes
are called "memory locations® becauses they can "remembher® wvalues.

1-23

f e e A - e R he e e bimEa - e e

Later vou will see that many more locations are available to store
data in, but for now there are only ?6 variables in NSC Tiny RAS[(C:

ABCDEFGHTI JKLMNOPQRSTUVNXY!Z
Before a variable has been assigned a value (1argon for outting »a
number into a pigeonhole), NSC Tiny BASIC aives it the value A, [t
is as if just before you sat down to use the computer someone had
t ypedt
A=2 B= (=7 etc.

When you first start NSC Tiny BASIC all the variables will contain
the value of zero (A),

Skentical? Try 1t out on your system,

>PRINT A
a

>PRINT B
A

>PRINT C
A

and so on, if you wish, up to PRINT Z,

Up to now you have used PRINT statements that orint only one thing,

»PRINT 7 One thing (7).

7 One thing (7).
SPRINT 243 One thing (2+3).

5 One thing (value of 2+3),
>A=13
>PRINT A One thing (A).

13 One thing (value of A),

The PRINT statement can print more than one things

>PRINT 7,5 Two thinas (7 and 5),

7 5 Two things (7 and 5).
sPRINT 7+5,7-5 Two things (745 and 7-5),

12 2 Two thinaos (values of 745 and 7-5).
»A=7
>B=5

1-24

>PRINT A,B Two things (A and B).
7 5 Two things (values of A and B),

>PRINT 7¢5,7=5,7%5,7/5 Four things.
12 2 35 1 " Four things.

>

NOTEt PRINT 74¢7,7-5,7%5,7/5

b

You can print two or more things orovided you separate each thing
to be printed with a comma in the PRINT statement.

CGH:AS

4.2 Exercises

Pretend for a few minutes that you are the INSB@273 and that NSC Tiny
BASIC is the language vyou understand. Show what would hapoen if vour
user typed the followings

ONE WO

>A=7 >M=47

>B=5 >N=9

>PRINT A+B,A-B,A%xB,A/B >Q=M/N
>R=M=N*Q

>PRINT M,N,0.R

THREE FOUR

>A=2 >A=37

>R=3 >Q=A/ 1A
sC=4 >R=A-10%0
>N=5 >B=1A*R+)
>PRINT A#B+C#D,(A+B)*(C+D) >PRINT A,B

1-25

B P - Sy vy L i

FIVE

>hk=32

>PRINT R*22/7,(R*R)%22/7

Cre gy Seiamm s L s oma el e el e A

You will find the answers in Apbendix A

4,3 The Stored Program
Compute the souares of 23, 37,
2 2 2
23 , 37 , 53 an
>PRINT 23%23
529

>PRINT 37#%37
1 369

>PRINT B53#53
28p9

>PRINT 88%88
1744

You can give more of the work t
a program to compute the square

18 X=23
20 PRINT X#X

53 and 88, That is, compute:?

2
d 88 , -
2
23 = 23 x 23
2
37 = 37 % 37
2
53 = 53 « 53
2

88 = B8R x 88

o NSC Tiny BASICt do this by storing
of a number...don’t do it yet,

1f you did type this i{s and got an ERROR
| message here, ft’s because your RAM is

not at the default location, To remedy
this situation, you must tell NSC Tinvy
BASIC where your RAM {s with a8 NFW
statement. If vour RAM {5 at
hexatecimal 074, then you would enter
NEW #1080 then NFW acain. For examolet

>NEW #1200
NEW

1-26

Notice that the above oroaram consists of twn statements and that
each statement bealns with a line number.

18 X=23
4

Line Numher, A line number can be an integer from
A to 32767.

When statements with line numbers are typed, the statements are not
executed immediately. Instead, the statements are stored in memory
for later execution,

Refore you store the above program, clear out — or erase - any old
nrogram that might be in memary., To do this typet

NFEN #1000
NEKR

NOTF: NFEW #1000 sets the start of nroaram vointer at location #1307
hexadecimal, The numher symbol (#) is imoortant, this will
be fully discussed in Chapter 5.

It {s important that the start of nroaram nointer is set to the
beaginning of availahle RAM, This allows the program lines to be

stored as they are typed in, If vour B@73 system Aiffers from
the one described at length in Section 3% determine the start
address of the RAM in your system: then, use that address in
vyour “NFW" command.

NSC Tiny BASIC will erase any old brogram in its memory and aqet ready
to accept your new orogram,

SNENW

> NSC Tiny BASIC is ready for a new
program,

Store the nrogram to comnpute the square of a number., Tyoe the
following texcept for the promots —~ NSC Tiny BASIC does that for
you.),

>NENW

>A =23

»20 PRINT XX
>

The program is now stored in memory. To verify thist

Tvoe LIST and press the RETURN key.

>LIST 4 When vou type LIST, NSC Tiny BASIC
17 X=23 lists the program.

20 PRINT X=X ¢
> .

1-27

To get A capy of the nrocram currently stored in the

memory, type LIST an<d press the RFETIIRN key. RIN the
>R
52¢
>
First NSC Tiny BASIC did this 4’Iﬂ X=23
Thean _.PM PR T

That’s all, so the INS8AT3 stonned,

Look over the last few inches of TIY paperi you may
something like the following, (Line spaces have been

it easler to read.)

INSBAT3%¢s
nrogram,

XxY

find it looks
added to make

-

>NENW First vou erased anv old proaram in the
system,
>10 X=23 Then you tyoned in this two line nrogram,
»20 PRINT XX
sLIST Then you asked NSC Tiny BASIC to tvoe
the nrogram out.
19 X=23 NSC Tiny BASIC obliged, (Notes ©No
200 PRINT X#X promnts,)
>RUN Then you aave the RUN command,
529 NSC Tiny BASIC ran the oroagrams this

was the result,

> Having done its Appointed task, NSC
Tiny BASIC typed a prompt,..ready for

more work.

Change the value of X, To 40 this, type in a new Line 2. This will
reolace the old Line |# with the new Line 18. After making this

change, LIST the modified program. Don”’t tvoe NENW,

>12 X=37

>LIST

13 X=37 This is the new Line 10,
2% PRINT XX and the old Line 24,

>

1-28

You can replace any line in the program by tyning & new line with the
same line number, To delete any line from a proaoram, simoly tyoe in
that line’s number followerd by a carriage return. When the nroaram is
listed, that line will no lonaer remain, RUN the modified nrogram,

>RUN
1 369

>
4.4 Exercises

. Change Line 1®# to 18 X=53 then LIST the modified orogram and HUN
it.

2. Chanae Line 1# to 1@ X=88 then LIST the modified nrogram and RUN
it.

If you did everything on the orevious two nages without making any
typing errors, the TIY vaage will l1ook like the followina. (Again,
line spaces have heen added for readability.)

REMEMBER
NENW l. To erase any old progqram and get NSC Tiny
BASIC ready for a new program, tyne NFEW and

>3 X=23 oress RETURN. ‘
20 PRINT XX

>LIST 2. To get a tyned copy of the nrogram currently
>l =23 .in the INSB?273’s memory, type LIST and

20 PRINT X»X nress RETURN,

>RUN 3. To tell NSC Tiny BASIC to execute the program
529 in its memory, type RUN and press RFTURN,
>1# X=37 4, To reolace any single line of a orngram in
>LIST memory, tyne a statement with the same

line Nnumber.

10 X=37
27 PRINT XwX
>RUN

1369
>i1a Y=53
>LIST

& X=53

20 PRINT XX

1-29

>RUN
2809

»>|@ X=88
>LIST

18 X=83
20 PRINT X=X

>RUN
7744

4.5 The = GO TO - Statement
If you tyned the Iinstructions
>PRINT ¥THE BOAT IS SINKING. MAN THE PUMPS!®
and pressed the RETURN key, the computer would printt
THE BOAT IS SINKING, MAN THE PUMPS!

and then ston. In a situation where A boat was actually sinking, the
computer should be more insistent and repeat the messagr ‘Complete

with bells) until :somebody nays attention. There is a way to do
this, Type In the following orogram, First typoe NEN, (Don’t RUN

the program yet.)
>NEW

>1% PRINT W"THF BOAT IS SINKING, MAN THE PUMPS! (CTRL GGLGGGGG)"

»2¢ GO TO 1o

>
Before you RUN thi's program - you must know how to stop it. When you
type RUN and press the RETURN key, the TIY will begin running the pro-
gram and ringing bells. To stop a runaway comouter, press BREAK (or
any other key) unti]l the computer stops.
Tyoe RUN and press RETURN.

>RUN

THE BOAT IS SINKING., MAN THE PUMPS! Rells

THE BOAT IS SINKING, MAN THE PUMPS! Bells

THE BOAT IS SINKING. MAN THE PUMPS! Aells

THE BOAT IS SINKING. MAN THE PUMPS! Bells
THE BOAT IS SINKING. MAN THE PUMPS! Bells

1-30

To STOP the progqram, press BREAK.

The following fs & short analysis of the above program., Each line
has a number. The first line {s numbered ten, the second twenty.
Khen you say ®RUNY the computer starts to execute lines beainning
with the lowest numbered line, In this case that s Line (A1 the
comoputer prints YTHF BOAT IS SINKING. MAN THF PUMPS! Rells" When {t
1s done with Line 14, it then executes the next higher numbered line,
In this case {t 1s Line 20, Line 20 has a new instruction, the GO TO

‘iInstruction, it does the obvious thina and tells the combuter what line

to go to, 1.e., what line to execute next. The computer executes Line
19 again, then looks for the next hiagher numbered line, and so forth,

The computer will not ston until {t fs elther turned off, or you stop
it by pressing the BREAK button,

If you are still unsure about how the GO T0O proagram works, follow the
ATTOWS S

>RUN
13 PRINT "THE BOAT IS SINKING, MAN THE PUMPS, BRells™

28 GO TO 1@

This program is in the form of 8 loop. The computer goes around the
loop until you nress the BREAK key,

After 'you’ve stopped the program by pressing the BRFAK key, vou can
start 1t again by typings

CONT {for “continue) then press RETURN

The progqram starts where it left off and continues to orint the messaae
over and over aqgain until the BREAK key is again oressed.

The imnlications nf this 1ittle nrogram are imnortantt It is a little
program, yet it produces a lot of outout! Tell a comnuter +to write,

"] will do my homework® a thousand times and {t will do it uncomolain-
inaly. In an automobile, a microcomputer can he oroarammed to check
the alyr pressure in the tires, the manifold nressure, fuel flow,
battery voltage, the timing and so forth, a hundred times a minute,
avery minute the car is in oneration. Renetitive {obs, hnwever many
times they must be done, are usually no more difficult to nroaram than
jobs that must be done only once or twice.

1-31

B T 2o —w— R N, e .

4.6 The « INPUT « Statement

2
Revert back to the problem of comouting the value of X for various

values of X. The INPUT statement i{s a handy method for feeding
values Into var;ables. Follow aiony with the program to compute:

2 2 2 2 2
X , then use it to comoute 23 , 37 , 53 , and 88 .

>NEW

>108 INPUT X (This is the INPUT statement)
2% PRINT XX

>3 GO TO @

The above is a three statement program, including a new type of
statement called INPUT. RUN the programs

>RUN
? {A new kind of prompt.)

NSC Tiny BASIC is now doing the INPUT statement. It types a question
mark, then waits. You must type a number and press RETURN,

>RUN
? 23 (Tyne 23 and nress RETURN.)
529
? (NSC Tiny BASIC typed another question mark to
show 1t“s ready for more values of X. Continue
with 37, then 53, then B8,)
>RUN
?7 23
529
? 37
1369
?7 53
2809
7 88
7744
? NSC Tiny BASIC will keep promoting with ? until
you let it know that you are finished., To do
thiss

Press and hold CTRL and, while holding CTRL down, press C,

1-32

? CTRL/C NSC Tiny BASIC has stopped running the program
STOP at 19 and waits for the next command,
>

Remember, NSC Tiny BASIC statements are dome in line order number,
unless a GO TO breaks that order, In the orecedina nrogram, the
statements are done in the order shown below, Again, follow the
arrowst :

»RUN
13 INPUT X Proavram loons around until vou ston {t
’ by tyoing CTRL and ¢ together - CIRL/C
27 PRINT X=X
3R TO 10

The following proaram computes the value of AX+B for INPUT values
of A, X, and B.

>NFW
>1m INPUT A
>20 INPUT B
>3 INPUT X
>4 PRINT A=*X+B
>5% PRINT un . This orints an *emnty line®. You could also
>6@@ GO TO 1o use the exnression without the quotes, They
>RUN only serve to make the output orettier,
2 2 mmmemeaeA
? 3 ———c——
75 e —— -
‘ ?213 ———————A%X+B
) 5 smece-—==| ine space printed by Line 5&.
?
T 3
78
19
7 CTRL ¢™)/C
STOP AT 1o

v

4.7 Exercise
How would you modify the program so that, after tvping RUN, vyou
could supply one set of values for A and B, followed by several
values of X?

See Annendix A for the answears,

1-33

4,8 Informative Printing
A program to orint squares of numbers could print answers thusly:
>RUN

?7 23
529

? 37
1369

7 53
2809

7 88
7744 -

? and so forth

[he following would be more preferables
>RUN
COMPUTE X SQUARED

WHAT IS X2 23
X SQUARED = 529

WHAT IS X? 37
X SQUARED = 1369

WHAT IS X2 53
X SQUARED = 2809

WHAT |S X? 88
X SQUARED = 7744

WHAT IS X?
«ss@nd so on until someone types CTRL/C.

This program identifies the desired input and the comouted and orinted
outnut.

The following are the first two statements:?

1 PRINT WCOMPUTE X SQUARED®
2% PRINT n»

Line 18 causes NSC Tiny BASIC to print the message COMPUTE X SQUARFD,
Line 20 orints a Line Feed.

1-34

The two statements:

33 PRINT ®"WHAT IS X779} e=w==ec=-=Note the semicolon,
40 INPUT X

Cause NSC Tiny BASIC to tynes
WHAT IS X?

and wait for a value of X. The question mark is the promot from the
INPUT statement. Did you observe the semicolon at the end of the
PRINT statement? It prevents a carriane return and line feerd from
occurrina, If vou Aon’t use A semicolon the following would hanpent

33 PRINT "WHAT IS X#wew—omm—- -—No semicolon.

43 INPUT X

Without the semicolon, NSC Tiny BASIC tynest
&

WHAT IS X

?

For this orogram, remember to use the semicolon at the right end of
the PRINT statement.

5% PRINT X SQUARED ="3 ~=c=e==Semicolon.

67 PRINT Xw»X
Together these two statements cause NSC Tiny BASIC to print the
message "X SQUARED =" followed by the value of X*X., For examole, if
X = 23, NSC Tiny BASIC will tyoet

X SQUARED = 529

Remember to note the semicolon on the right end of Line 5¢. Had it
been omitted the following is what would happent

5# PRINT “X SQUARED =" —=w===—No semicolon.
6@ PRINT X#X

If X = 23, NIBL will type

X SQUARED =
529

One more statement?

7a GO TO 29

1-35

The following is everything put together in a complete programs

18 PRINT COMPUTE X SQUAREDY
205 PRINT wa

3@ PRINT ®WHAT IS X"3

40 INPUT X

5@ PRINT ®X SQUARFD=%"3y

60 PRINT XX

73 GO TO 20

Load the above program into vour I[INSRA73 and RUN it. Try it for
X = 23, 37, 53 and 88,

4.9 Multiole Statements Per Line

The following instructions exolain how to but two or more statements
on nne line,

Instead ofs 30 PRINT “WHAT IS X¥3
400 INPUT X

You ¢an put both statements on one linet

30 PRINT #WHAT IS X* t INPUT X
{(first statement) (second statement)

(The statements are senarated by a colon}
To put more than twn statements on a single line, follow the sare
format as above And be certain to separate each statement with A
colon (%),

Instead of:
22 PRINT #n
33 PRINT #WNHAT IS Xag
473 INPUT X

Put all three statements on one linet

28 PRINT #n g PRINT #AHAT IS X#g 3 INPUT X

1
Ist 2nri 3rd
statement statement statement

colon colon

1-38

e

‘The following is an example of four statements on one line.
47 - INPUT Xt PRINT *) SQUARED="3s INPUT X 3 PRINT X=X ¢t GO TO 20

Instead ofs

4 INPUT X

52 PRINT *X SQUAREDa#g
65 PRINT X*X

7% GO TO 20

2
the following is a "compact® program to comoute X , featuring the use
nf multinle statements per linet

19 PRINT “COMPUTFE X SQUARFD™

200 PRINT we g PRINT ®WHAT IS ¥y s INPUT X
53 PRINT ®X SQUARFD =%3 & PRINT X*X 31 GO TO 20 -

Try it on your INSR&73,

Follow the arrows to see how the nrogram works.

RUN

13 PRINT “COMPUTE X SQUARFD"

270 PRINT "t ¢ PRINT ®WHAT IS X"s ¢ [INPUT X

5% PRINT #X SQUARED ="3 * PRINT XX ¢ GO TO 22

As per standard, NSC Tiny BASIC does lines in line number order,
first Line 18, then to Line 20, then Line 54. NSC Tinv RASIC does
all statements on A line in left to right order before moving on to
the next line. Since Line 57 ends with a8 GO TO 29 statement, NSC
Tiny BASIC, indeed, goes to Line 2@ and continues, after finishing

Line 53,

In order to emphasize that multiole statements per line are separated
by colons (t), a space on each side of the colon has been addeds this

is optional and Line 28 could have been typed:

2% PRINT "% sPRINT “WHAT IS X"s:INPUT X

1-37

Some statements such as PRINT and INPUT can take multiple arguments,
This allows several statements to be added together into one. for
example?’

1APRINT X3:PRINT 431sPRINT #DOMINO"3sINPUT AsINPUT B
can be shrunk tot

19 PRINT X,Y, *YDOMINO®sINPUT A,B

4.17 Exercises

l. Krite two programs to compute the value of AX+B for input values
of A, X and B, as {llustrated bv the following RUN of our orogram,

>RUN
PROGRAM TO COMPUTE AxX+B

A=? 2
B=? 3

X=2 5
AxX+B = |3

X=2? 8
AxX+B = |9

X=? 12
AxX4+B = 27

X=7 ...and so on...nress and@to ahort program,

A. Program No. t. Do not use multiple statements ner line,

B, Program No. 2. Use multiple statements per line,

Answers are in Apoendix A

1-38

CHAPTERS

5.1 Bits and Bytes

We assume that you are using an INSARA73 with at least 256 memory
locationssy this is the minimum confiquration to run NSC Tiny BASIf,

o Each memory location holds, or stores, one bvte of
information,

o One byte consists of eight binary diaits commonly called
hbits. BIT = BINARY DIGIT

o One byte = B bits.
o A binary diqgit (bit) is either @ or 1.

You can think of a memory location as shown in the following diagrams

altja|lal1]1alald The number, 73, is stored
in binarv.

| BYTE = 8 BITS = | MEMORY LOCATION

Each bit must be @ or |, Below are some numbers shown stored in bytest

NUMBFR (DECIMAL) STORED AS A BYTE (BINARY)
2 Ala|ra|lr|2|a]|a| @
| aAld|a|a|a|a|a]l
2 aAla|la|a(a|all |
4 Al |||l |Aa|aA
8 ala|la|lall |a|2|7
16 gla|2a|t|a|a|o|a
32 ala|ll |a|la|a|la]|@
64 dll|a|(ad|0|0|A]|07
128 I I O I I - B O I

1-39

h.,7 Exerclses

Figure out how 3, 6, 7 and 29 would be stored. What is the laraest
that can be stored in one byte?

Answers are in Appendix A
5.3 Memory Address

Each memory location has a unique nimeric address. The NSC Tinv
BASIC program in the INSRA73 system occupies locations with adidresses
2 to 2559,)

An exnanded INSRA73 system might have more memory locations. For ex-—
ample, your system may have 8192 locations, or 12288 locations... and
so on, up to a maximum of 65535 locations, which includes "lcocationsg®
that are really ports for perioheral devices,

Memory addresses miaht run from @ to 4495 or @ to RIQl, or @ to 122R7,_
and so on.

o Memory locations @ tao 2559 hold NSC Tiny BASIC in the
on-thipn ROM (Read Only Memory) of the INS8M73.

0 Addresses 2560 through 65471 are vours to use. When you
tyoe in an NSC Tiny RASIC orogram, you use some of these, The

longer your nroaram, the more you use. If you wire un some
interesting electronic gadgets to the system, you will most

likely use some of these addresses. Not all of these memory
locations will actually be there in a tynical system,
5.4 Hexadecimal Number System
To understand the literature, you are going to have to learn hexa-
decimal. The hexadecimal (base sixteen) number system Is a handy
shorthand for talking about hits and bytes and memory addresses,
in hexadecimal, addresses ranage from #3203 to #FFFF.
The number siagn (#) is used to tell you that the number is hexadecimal
instead of decimal. This is the notation used in NSC Tiny BASICS other
notations exist In other literature.
This is a decimal numhers 28673
This is a heradecimal number: #T70m|
The hexadecimal system has more digits than the decimal system.
Decimal digits: #1 234546 78829

Hexadecimal digitss #1 23456789 ABCDETF

1-40

‘?-‘-!:"‘A

Just as in the decimal system, each hexadecimal diagit has a positional
(or place) value, The digit oecupying any vosition is multiplied by
the value of that particular nosition. These products are then added
together to obtain the value of the number,

Hexadecimal position values are expressed as powers of sixteen (rather
than 1# as in the decimal system). Positions are numbered from right
to left according to the i{ncreasing nowers:

POSITION POSITION POSITION POSITION
3 2 t a
3 2 [1
16 16 16 16

The decimal values of the powers of sixteen aret

2 | 2 3
16 = | 16 = 16 16 = 256 16 = 4996

Check the Aecimal equivalents of the the following hexadecimal numbhers,

3 2 l @
#7031 = (7T x 16) + (A x 16) + (B x 16) + (1 x 16)

= (7T %X 4096) + A + 3 + |

= 28672 + @ + 4 + | = 28673
#7002 = 28672 + @ + 3 + 2 = 28674
#7034 = 2B6T2 + 4 + 0 + 4 = 28676
#7010 = 28672 + B + 16 + @ = 28688
© #7920 = 2R672 + @ + 32 + 4 = 28774

(Remember, # in front of a number means it is hexadecimal.)
You will notice that In Section 3 a hexadecimal number is referred to
by preceding the number with an PXs# [nc<tead of the “#" sign, for ex-
amples
X’8000

This 1s a more standard notation for hexadecimal numbers, bhut NSC Tiny
BASIC does not like {t.

1-41

If we ask the INSBA73 in NSC Tiny BASIC to orint a hexadecimal number,
NSC Tiny BASIC orints the decimal equivalent.

>PRINT #7091
28673

>PRINT #A
&

>PRINT #8B
[N

>PRINT #C
12

>PRINT #D
13

>PRINT #E
14

>PRINT #F
15

>PRINT #10
16

And 50 ON.es

The following is a table of hexadecimal digits vs. decimal values,

;. HE XADECIMAL DECIMAL
DIGIT VALUE

MTMOOP>»>CO~NNONHLWN=]
VAWN=—3I30VRNOMAwWwN-~

—— A ey g =

1-42

You may wish to use the following small porooram for further exoeriment.
ations

*»NEW

>1 2% REMARK HEXADECIMAL TO DECIMAL

>118 PRINT ¥

1279 PRINT ®HEXADECIMAL NUMBERM$sINPUT H

>130 PRINT ¥YDECIMAL EFQUIVALFNT IS* ,H - This is a multinle PRIN
>1400 GO TO 112 statement, see section

4,8,
>RUN

HEXADFCIMAL NUMBER? #7001
DECIMAL EQUIVALENT IS 28673

HEXADFCIMAL NUMBER?...And so on, If you type a decimal numbher
{without #), you will get
the decimAal equivalent of

your decimal number.

You may have noticed something new in Line I®. Any line that beains
with the word YREMARK® is ignored by NSC Tiny BASIC, even if it
contains ancther statement preceded by a colon. These REMARKS are usec
to help document the orograms and, RFMARK statements will be found In

areat abundance in the programs that follow in this orimer,

5.5 More About Hexadecimal

The hexadecimal numbers #3 to #7FFF, inclusive, are equivalent to the
decimal numbers, & to 32767, inclusive, You can obtain the decimal

equivalent of any hexadecimal number in the above range bv usina the
program on this paage.

“To find out about the hexadecimal numbers from #8072 to #FFFF, use the
program on this page, Enter that orogram and type RUN,

>RUN

HEXADECIMAL NUMBER? #8007
DECIMAL EQUIVALENT IS =-32768

HEXADECIMAL NUMBER? #8001
DECIMAL EQUIVALENT IS -32767

HEXADECIMAL NUMBER? #FFFF
DECIMAL EQUIVALENT IS -1

HEXADECIMAL NUMBER? #FFFE
DFCIMAL EQUIVALENT 1S -2

And so on...

1-43

o e s e ¢ am [P .

Uy

#emember the number circle in

*0
#FFFF
FFFE
#FEFD
#FFFC
#FFFB

#8005
#8000

#8003
#8032

#8097 |

et 42 S e M B L b e D b b B mbiemem 11t mere o

Chanter 37 It works in hexadecimal toos

#1
#2

#3
#4

#5

TFFC

#7FFD
#7FFE
#7FFF

#8 000

the hexmadecimal number circle with the decimal ¢circle in Chao-
Relow is a table showing some of the eauivalences between
and hexadecimal NSC Tiny BASIC numberss

Comnpare
ter 3.
Aecinal

POSITIVE NUMBERS

NEGATIVE NUMBERS

Hexadec imal Decimal Hexadecimal Decimal
#1 | FET 27 =32 16R
#2 72 #RAA -32767
#3 3 #3002 =-32766
#4 4 #BOA3 -32765
#TFFD 32765 #FFFD -3
#7FFE 32766 #FFFE -2
#TFFF 32767 #FFFF -1

NSC Tiny BAS]C automatically converts numbers from hexadecimal to
decimal during print outs however, there is no built-in method for
printing numhers directly in hexadecimal, The following examnles
illustrate the method used to convert decimal numbers & to 255 to

hexadecimalt

|o/”73r)l
9~_‘____,,J'

16/ 95—-_——“\\!
88 = #5F
‘—___’f"

Check: 4 x 16 + 9 = 73

Checks 5 x |16 + |15 = 95§

Checks 15 x 16 + |5 = 255

#F = |5 #F = |5

—
1-.‘-,»"

.You can convert any decimal number. #@ to 255, to hexadecimal as

"followss

1. Divide the decimal number hy 16, ohtaining the auotient b
and remainder R.

2. For decimal numbers in the range @ to 255, the nuotient 0
and the remaindar R will each be numbers in the range 2 to
15, Inclustive,

3. The hexadecimal number fs #07R’ where Q7 and R? are the hexa-
dec!maé fligits (@ through F) corresnondina to the values nf
Q and R,

The followina is a oroagram to comnute 7 and R, this nrogram features a
new function, called 40D, for comoutina R,

>ﬁEw

>1 37 RFMARK CONVERT DECIMAL TO HEXADECIMAL, SORT OF
> 113 PRINT #“:PRINT “YOUR NUMBER®3tINPUT N

>12a R=MON(N, 16)

>130 N=N/16

>14% PRINT #HEXADFCIMAL DIGIT VALUESs» 0,R

>15% GO TO 110

>RUN

YOUR NUMBER? 73
HEXADECIMAL DIGIT VALUEST 4 9 Therefore, 73 = #49

YOUR NUMBFR? 95
HEXADECIMAL DIGIT VALURS: § |5 Therefore, 5 = #5F

YOUR NUMBFR? 255
B HEXADECIAL DIGIT VALUES: 15 5 Therefore, 255 = #FF

ﬁn Line 120, the function MOD(N,16) comnutes the remainder on division
of N by 16,

The following i1llustrates the method used to convert decimal numbers

in the range @ to 32767 to four diait hexadecimal numbers. Check it
over very carefullys

’6/,_2217 z5fE6T:_““jﬂy—ni:____——’/:ig‘234

i 46 131 2
144 128

20 3
6

- p—

The above 1is the conversion for 4667 to #1234

1-45

1792 1 -’——-\’
286 73 ?/a 792 us/l i 7_’?“'3/'3%1

1F)

1?6
12 l6
TaT T 32
144 32

33 ?

32
—2

The above is the conversion for 28673 to #7801

You try to convert 6844 to hexadecimal.

16/ 6844 16/ 16/ 6R44 = #

{The check your conversion of 6844 to hexadecimal, look at the next
proqram,)

The following oroagram will work for numbers in the range # to 327671,
inclusive.

>LIST

1A% REMARK CONVERT DECIMAL TO HEXADECIMAL, SORT OF
11@ PRINT “#sPRINT *YOUR NUMBER¥3$:INPUT N
1200 X=MON(N, 16)
[3@ N=N/16
149 W=MOD(N,16)

! 1584 N=N/16

' 160 VaMOD(N,16)

179 U=N/16
18¢ PRINT #HEXADECIMAL DIGIT VALUES:®U,V,W,X

199 GO TO 1@

>RUN

YOUR NUMBER? 4660

HEXADECIMAL DIGIT VALUES: 2 3 4€—A4667 = #1234

YOUR NUMBER? 2B6R3
HEXADECIMAL DIGIT VALUES: 7 & 0 4—2R673 = #7041

YOUR NUMBER? 6R44
HEXADFCIMAL DIGIT VALUESs | 10 1l 124-6844 = #1ARC

YOUR NUMBER? 255
HEXADECIMAL DIGIT VALUESt @ @ 15 I54—255 = #AOFF = #FF

1-46

o

YOUR NUMBER? 32767
HEXADFCIMAL DIGIT VALUES: 7 15 15 154-32747 = #7FFF

YOUR NUKBFR? -1
HEXADFECIMAL DIGIT VALUES:t @ % 0 -1q@—Raware of neagative nimbers!

YOUR NUMBFR? =32767
HEXADECIMAL DIGIT VALUES: =7 =15 =15 =15

YOUR NUMRFER? #7021

HEXADECIMAL DIGIT VALUES:s 7 2 @ I - Hexadecimal iIs converted to
hexadecimal, provided the
number is in the range #2 to

#TFFF,

YOUR NUMBER #S0pa
HEXADECIMAL DIGIT VALUES? =B 0 0 & Other hexadecimal numbers qive
: funny results. A comolete ex-
planation will not be attempt—
ed in this orimer,

YOUR NUMBFR? (No GO TO statement at end of nroaram)

In case you haven’t fiaurerd out how the pnroaram works, follow along as
the program for N = 4660 is traced, The following trace shows the

values of variables after the statement on the same line has heen
executed,

STATEMENT N u v W X
1o INPUT N 4660
1284 X=MOD(N,16) 4660 4
133 N=N/16 291 4
147 W=MOD(N,16) 291 3 4
158 N=N/16 18 3 4
1660 VaMOD(N,16) {8 2 3 4
173 U=N/16 8 1 2 3 4

18@ Prints the values of U,V N, and X
192 REPEAT THE PROGRAM AD INFINITUM

1-47

5.6 Exercise

Trace the proagram for N = 68441

1e
120
130
140
153
160

170

STATEMENT
INPUT N

X = MOD (N,16)
N = N/I6

= MOD (N,16)

NZ16

L]
N
V= 40D (N,16)
U = N/Io6

Answers are in Annendix A

6844

1-48

CHAFIEHKDS

*

6.1 The 1F Statement

The useful and powerful IF statement nermits programs to be written
in which the computer makes simnle decisions.

The following is hn IF statementt
1F P=14 THEN PRINT “AlR PRESSURE IS NORMAL®

This statement tells the computer *IF the value of P is equal to four-
teen, then print the message "AIR PRFSSURE 1S NORMAL.*®. Not stated,

but imnlied, fs that IF P {s not eaual to fourteen, the messaqge is
not orinted.

The following is an example of the IF statement used {n a short
Bnrogramt

123. REM AIR PRESSURE MONITOR
11 PRINT ##3PRINT #WHAT IS AIR PRESSURE¥s tINPUT P

1280 IF P = 14 THEN PRINT “AIR PRESSURE IS NORMAL"®
13@ GO TO 110

You may have noticed that an abbreviated form of the "Hemark" state-~
ment was used in Line 1#, NSC Tinv BASIC only needs the first three
ietters to recoanize the wordil YREMY® can be used as an abbreviation

for the word REMARK.

Next, run the program and suoply several values for air oressure,
P.

>RUN

WHAT IS AIR PRESSURE? 14
AIR PRESSURE IS NORMAL

WHAT IS AIR PRESSURF? (4
AIR PRESSURE IS NORMAL

WHAT 1S AIR PRFESSURE? 23
WHAT 1S AIR PRESSURE? 2@ -No message is printed

WHAT IS AIR PRESSURF? & __ |

NHAT IS AIR PRESSURE? ©* C4—(Control/C was pressed)
STOP AT I

>

1-49

U . 3 el 2l e i

MRy m s o B fhe s s .

It would be better to have NSC Tiny BASIC orint messaqges and ring
bells when the air pressure is NOT normal. Replace Line 123 with the
following IF statement:

120 1F P ¢> 14 THEN PRINT ®AIR PRESSURE IS NOT NORMAL bejlls®
In NSC Tiny BASIC, <> means...not equal to...
The following is the comolete programs

180 REM AIR PRESSURFE MONITOR AND ALARM

113 PRINT “#spPRINT “WHAT IS AIR PRFSSURE*stINPUT P

120 IF P <> 14 THEN PRINT #AIR PRESSURE IS NOT NORMAL bel]s*
136 GO TO 110

>RUN

WHAT IS AIR PRESSURE? 14
WHAT IS AIR PRESSURE? 14
WHAT IS AIR PRESSURE? 14

WHAT IS AIR PRESSURE? 5@ (Trouble!)
AIR PRESSURE IS NOT NORMAL Bells

WHAT IS AIR PRFSSURE? 12
A1R PRESTURE IS NOT NORMAL Bells

And 50 or.

In a situation where air pressure was actually being monitored, Line
11# would be renolaced with a a methnd for automatically acauiring the
value of the air oressure P} probably by means of an analoa to -digital
converter wired into the INS3®73’s memory. For now, however, you will
simulate the acquisition of data by means of INPUT statements and
concentrate on the structure of the oroqram itself,

Requiring P to be exactly 14 is a tight controlt loosen things uo a
little and let normal pressure be anything from 13 to 15, Inclusive,
You want a warning orinted whenever P is less than 13 or areater than

190 REM AIR PRFSSURF MONITOR AND ALARM

118 PRINT ®%sPRINT “WHAT 1S AIR PRESSURE®s s INPUT P

126 IF P <« 13 THEN PRINT *AIR PRFSSURE IS NOT NORMAL Bells”
132 IF P2 > 15 THEN PRINT ®AIR PRESSURE IS NOT NORMAL Bells®
146 GO TO 114

If P is less than 13, Line 120 will eause a warning/alarm to be

nrinteds and, {if P is aoreater than i5, Line 137 will cause the
messace to be printerd. If P is 13, 14 or 15, nh message will occur,

1-50

>RUN

WHAT IS AIR PRESSURE? 14
WHAT 1S5 AIR PRESSURE? 13

WHAT 1S AIR PRESSURE? 15
WHAT IS AIR PRESSURE? 124—(Pressure {s less than 13)

AIR

PRESSURE IS NOT NORMAL Bells

WHAT IS AIR PRESSURFE? 164—(Pressure is more than 15)

AlR
And

6.2 Exercise

Modify the

PRESURE IS NOT NORMAL Bells

so On...

ahove program, with fust two small changes, so that when air

pressure is not normal NSC Tiny BASIC will tell you whether {t is too
high or too low. A RUN might look like the followina, chanage the last

orogram to

>RUN

do this. Answers Are in Annendix A

NHAT IS AIR PRESSURE? 14 .
WHAT IS AIR PRESSURE? 13

WHAT IS AIR PRFSSURE? 15

WHAT IS AIR PRESSURE? 16
NARNING! AIR PRESSURE T0OO HIGH

NHAT IS AIR PRESSURE? 12

And

WARNING! AIR PRESSURE TOO LONW

SO CNyasw

Since you are monitoring air pressure between limits, change the

program to
limits?

103

- 112

120
130
149
150
160
79
130
190
200

give yourself a little more flexibility Iin setting the

REM AIR PRESSURE MONITOR AND ALARMW

EE?3L=LONER LIMIT, U=UPPER LIMIT FOR NORMAL PRESSURE
=

U={5

REM ACQUIRFE ACTUAL AIR PRFSSURE, P

PRINT w#sPRINT ®"WHAT IS AIR PRESSURE™g t INPUT P

REM IF P 1S OUTSIDE NORMAL LIMITS, PRINT MRSSAGE
IF P<L THEN PRINT "NARNING! AIR PRESSURE TOO LOnW®
IF P>U THEN PRINT “WARNING! AIR PRESSURE TOO HIGH*
REM GO GET ANOTHER VALUE OF P

GO TO 150

1-51

t Try the preceding program: then, change the lower limit (L) and upoer
“1imit (U) in Lines 120 and 133 and try the nrogram agein.

Also try thist Combine Lines 190 and 20 as followss
198 GO TO 150tREM GO GET ANOTHER VALUE OF P

Line 190 now contains two statements, & GO TO which tells NSC Tiny
RASIC what to do, and a REM (remark) which tells you what {s haonening,

You may wish to change Lines 128 and 1392 to INPUT statements. In that
case, a RUN might look like the following?

>RUN

LOWER LIMIT FOR NORMAL AIR PRESSURE? 13
UPPER LIMIT FOR NORMAL AIR PRESSURE? 15

WHAT I3 AIR PRESSURE? 14
WHAT 1S AIR PRFSSURE? 13

WHAT IS AIR PRFSSURE? 16
WARNING! AIR PRESSURE TOO HIGH

WHAT IS AIR PRFSSURFE? 12
B WARNING! ATR PRESSURE TOO LOW

And so on...
in general, the [F statement has the form of THFN:?
IF condition - THEN statement
3Fnr example, the following are two IF statements you’/ve already seent

IF P = 14 THFN PRINT “AIR PRESSURE IS NORMAL#
1

|
Condition Statement

IF P<L THEN PRINT ®"WARNING! AIR PRESSURE T0OO LOW™
| |
Condition Statement
The following is Aan IF statement that yvou will be using soon.
IF F»2% THEN GO TO 514
—T
Condition Statement

The condition is frequently a comparison between two quantities, Here
.'1s & handy table of comparisons that can be usad in [F statements:

NIBL Symbol Meanfing : Math Symbol

- Is equal to

< Is less than

> Is qreater than

<= Is less than or equal to

>= Is greater than or equal to

<> Is not equal to, {.e., greater
or less than

. fAvaan

The guantities being comnared can be numbers, variables or algebralc
expressions, The comparison can be TRUE or FALSE,

Below are comparisons and their truth values, TRUE or FALSE:

3 +5 > 6 is TRUF, always,

[f A=8and B3 = 37, then 44pA <= B is FALSE

If A = 8 and B = 32, then 4%A <= B {5 TRUE

If A =08 and 8 = 46, then 4%xA <= B {s TRUE
If the comonarison is TRUE, then the next statement on the same line as
the IF is executed, It can he any kind of statement:t A PRINT, a GO
TO, another IF, or even those kinds of statements yet to be introduced,

If the comparison {s FALSE, then the statement following the comparison
is Ignored and.the next highest numhered statement is executed,

IF P<L. THEN PRINT #WARNING! AIR PRESSURE TOO LOW"

Do this if the condition P < L is TRUE.
Don’t do this {f P < L is FALSE.

That’s all there is to IF statements, except that the word THEN may
be omitted if you wish., For example, instead of writing:

IF P=14 THEN PRINT "AIR PRESSURE IS NORMAL*®
you can omit the word THEN and write:?
IF P=14 PRINT %AIR PRESSURE IS NORMALY'

Sometimes the word THEN makes the orogram easier to read., Use it if
it feels comfortable, :

Re careful to avoid making multiole statements separated by colons

on a l1ine with an IF statement. Remember that when an IF condition
is found to be FALSE, the entire rest of the line is ignored. There~-
fore, for the following program, a zero will be nrinted.

1-53

10 A=01B=99 .
23 1F B> 104 THEN PRINT *BIG B4A=|
30 PRINT A

The following orogram has several REM’s to help you read and under-
stand {tt

1?3 REM DIALYSIS FLON MONITOR PROGRAM

11 REM GET FLOW RATE, F
120 PRINT ""sPRINT MFLOW"3sINPUT F

13@ KREM CHECK IF FLOW RATE CRITICALLY HIGH
14@ 1F F>20 THEN GO TO 518

15@ REM CHECK IF FLOW RATE CRITICALLY LOW
160 IF Fel? THEN GO TO 519

172 REM CHECK IF FLOW RATE ABNORMALLY HIGH
183¢% IF F>17 THEN GO TO 718

198 REM CHECK IF FLOW RATE ABNORMALLY LOW
200 IF F<!3 THEN GO TO 710

214 REM [F FLOW RATE IS NEITHER TOO HIGH NOR TOO LOW, IT IS OK
227 PRINT “FLOW OK%:GO TO 127

543 REM FLOW RATE CRITICALLY HIGH OR LOW, SOUND BELLS
513 PRINT #DANGER! FLOWN RATE CRITICAL BellssGO TO 129

739 REM -_0W RATFE IS ABNORMALLY HIGH OR LOW, PRINT MFSSAGE
7i@ PRINY YWNARNING: FLOW RATF ABNORMAL¥:GO TO 129

Try this orogram, make sure it works for all possible conditions. Try
the following flow rates as test cases.

FLOW OKe 13, 14, 15, 16, 17
ABNORMAL: taa, tit, 12, 1R, 19, 2@
CRITICALe 7, 8, ©, 21, 22, 23

After you have convinced vourself that this oroqfam works, read the
following analysis of it.

Follow alona and trace through the orogram for a few specific values of
F. First, supvose F = 25, The condition in Line 140 (F>20) is TRUEs
therefore, NSC Tiny BASIC will ao to 51%. Line 519 directs NSC Tiny
BASIC to orint the message “NDANGER! FLOW RATE CRITICAL*, ring the TTY
bell several times, then GO TO 129 for A new value of F, This will
continue to hapoen for as long as F remains greater than 28,

1-54

T A e rrrm e e G T e P = wes ERER— ettt - e e m——

Suopose F = 9, The condition in Line 140 (F>20) is FALSE, so NSC Tiny
BASIC goes on to Line 166, In Line 608, the condition (F<i3) is TRUF,
so NSC Tiny BASIC will go to 513, print the danger messane, ring the
bell, then GO TO 123 for still another valus of F.

Suppose F = 18,. The condition in Lines 140 and 160 are bnth FALSS,
(Check them yourself.) Therefore, NSC Tiny BASIC arrives at Line |ARa,
The condition in Line 184 (F>17) is TRUE, so NSC Tinv BASIC does GO TO
71¢8 and, as directed by Line 718 prints the messange, "WAININGt FI.OW
RATE ABNORMAL®_, then noes back to Line 178 for another valus of F,

The nboée has tracert three nossible naths throuaoh the nrOQraht there

are two more, try these for F = 12 and F = 15, As there are five
nossible paths {n all, you may wish to choose your favorite colors of

felt tip oens and actually draw the paths,

Flowchart

140 |
GO TO 510

5ta

NANGER! FLOW :
—»| RATE CRITICAL —»
(BELLS)
GO TO 120

167 \/—‘
GO TO Sia [

1 BA

6o To 71| |
710
WARNINGt FLOW
| RATE ABNORNAL ["] ¢
GO TO 126
$ TRUE 200
GO TO 7108 [
FALSE
220
FLON OK >
GO TO 120

1-55

In the flowchart, or logic diagram, of the Dialysis Flow Monitor Pro-

‘ram, the diamond shabned hoxes correspond to the IF statements.
The numbers at the top of each box correspond to line numbers in the

proagram. Compare the flowchart with the program. Trace through the
flowchart for several values of F, Make sure you trace each of the

five possible paths through the nrogram. Ffor examnle, try it for F =
25, 9, 18, 12 and 15, <(Aqain, please note that it would be heloful to

mark each path with a different color,)

6,3 A More Compact Program

In looking over the Dialysis Flow Monitor Program, we note the
followingt

. If F>»27% or F<1@®, the program should have a danger message olus
alarm,

2. If the ahove is not true, and if F>17 or Fc<13, then the orogram
should have an "abnormal" message, but not an alarm,

3. If neither of the above are true and everything is 0K, a YFLOW
0K" message will suffice,

RAS5C Tiny BASIC permits the use of logical nperators AND, OR and NOT.
Use i1s made of the OR operator in the following revision of the

dialysis orogram,

1@ REM DIALYSIS FLOW MONITOR PROGRAM

114 REM GET FLOW RATE
123 PRINT "““: PRINT “FLOW“3ssINPUT F

133 REM CHECK IF FLOW RATE CRITICALLY HIGH OR LOW
140 IF (F>20) OR (F<I®) THEN GO TO S1a

172 REM CHFCK [IF FLOW RATE ABNORMALLY HIGH OR LOW
184 IF (F>17) OR (F<l13) THEN GO TO 71@

21 REM IF FLOW RATE 1S NEITHER T0OO HIGH NOR TOO LOW, IT IS OK
220 PRINT ®FLOW OK*:GO TO 120

533 RFM FLOW RATE CRITICALLY HIGH OR LOW, SOUND BFLLS
513 PRINT *DANGFR! FLOW RATE CRITICAL Rells:GO TO 120

76@ REM FLOW RATF IS ABNORMALLY HIGH OR LOW, PRINT MESSAGE
71@ PRINT ®WARNINGs FLOW RATE ABNORMAL™:GO TO 129

1-56

Suppose F=25, Then the compound condition (F>2@) OR (F<1@) in Line 14%
1s TRUE. In this case NSC Tiny BASIC will GO TO 510, If F=9, the
compound condition is also TRUE and NSC Tiny BASIC will GO TO 510,

‘. Suppose F=|B, The compound condition (F>23) OR (F<i?) in Line 140

i1s FALSE, so NSC Tiny RASIC continues on to Line 1BAd., Remember, F is
now equal to I8, so the condition (F>17) OR (F<13) in Line 132 is TRUR,
NSC Tiny BASIC does a GO TO 71@,

+* % «The parentheses enclosing F»20, F<Il® and so on,
are necessaryl without them, the proqgram will
not work, because logical onerators, as arithmetic
operators, are evaluated from the left side of the
exnression to the rioht. Parentheses are used to give
precedence, % %

The followina is A flowchart of the condensed dialysis oroqram.

START
120\
\ INPUT)

147
F>2@ OR

510
DANGER! FLOW
RATF CRITICAL
{BELLS)

GO TO 120

710
NARNING! FLONW »
RATE ABNORMAL
GO TOo t2@

220
FLOW OK —»
GO TO 128 |

1-57

Have you noticed that both programs tested for the most danqger-
ous condition first? Then tested for the second most dangerous,
simply as a matter of life-saving priorities., In this case, a few
milliseconds nrobably won’t make much differencet however, in many
real time apolications, a few milliseconds do make a difference,

To fllustrate to you that programs usually can be improved upon, the
following {s a suner-condensed Nialysis Flow Monitor Programs:

120 PRINT "“:PRINT "FLOWMs:INPUT F

14¢ IF (F>22) OR (Fei@) PRINT “DANGER! FLOW RATE CRITICAL":
GO TO 120

162 IF (F>17) OR (F<13) PRINT “WARNINGt FLOW RATE ABNORMAL¥t
GO TO 120
220 PRINT ¥FLOW 0K%3130 TO 124

Tne AN]D, OR and NOT operators need not be limited to use in IF state-
ments. They are loaical onerators and onerate Bl t-by~Rit on any con-
stant or variahle. This will be illustrated later on in this manual
with an examnle on some [/0 bits.

The following program implements the function indicated in the graph
beneath ft¢

12 REM HASTILY CONSTRUCTED PROGRAM TO ILLUSTRATE USE QOF %“AND*“
11# PRINT "w3PINT ®X=#3:INPUT X

1260 IF (@<=X) AND (X<=106) PRINT "Y=",X3GO TO 1@

132 IF (12a8<X) AND (X<=20@) PRINT ®Y=2,164:G0 TO 110

149 IF (20%<X) AND (X<=4P3) PRINT “Y=“.l5ﬂtGO T0 118

154 PRINT Y IS NOT DEFINED FOR X=%,X

NOTE* The nmarentheses around A<=X, X<=108, and so on In the
IF statement are necessary, Without them, the program
will not work. This is because of the multinlicity in the
conditions belng checked,

Y = f(x)
159
109
—P X
IGGI 2Gﬂ' 453

X for 0 < X < 103
y = f(x) = |64 for 120 < X < 2n@
159 for 208 < X < 490

P

The following 1s a RUN of the precedina program. All critical points
have been checked,

RUN

5o Xm? -1
Y IS NOT DEFINED FOR X=-I|

Xu? @
Y= &

X=? 37
Y= 37

X=2 99
Y= 99

X=? 107
Y= 190

X=? 1741
Y= 101

X=2 199
Y= 19

X=? 200
Y= 100

X=? 271
Y= 150

T X=2 299
Y= 150

X=7 307
Y= 150

X=2 3731
Y- 158

X=? 399
Y- 150

X=2 470
Y- 150

X=? 40|
Y IS NOT DEFINFD FOR X = 441

And SO ON,...

1-59

‘6.4 Random Numbers and Comouter Games

Another useful feature in NSC Tiny BASIC is a random generator.
Sometimes it is .useful to generate random numbhers between soecific
limits. A trivial use is to imitate a pair of dice. The statement:

D = KND(),6)

will make D some number between | and 6 inclustive, with equal -
orobability for each of the nossibilities. The following program
simulates a valr of dicet

12 PRINT RND(1,6), RND(1,6)
2% GO TO 1@

RUN the proaram for a while:

-—wuwawu-uma;:
NUO@-&&U"WP\J—N-WM—%

TOP AT 18

v We=—w

In general, the expressiont

RNDCA,B)
1s & random integer between A and B, inclusive, A and B may be
alaebraic exoressions, simole variables or constants. RND may be
used wherever a variahle may he used,

Random numbers are widely used to test nrograms, and to do Monte Carlo
method solutions to probhlems. Many qgames use a random number genera-

tor.

1-80

12 RFEM GUFESS THE NUMBFR GAME
20 X=RND (1,100)REM X IS THE SECRET NUMBER FROM | TO 102
30 PRINT"wsPRINT #WHAT IS YOUR GUESS"4
4@ INPUT GsREM G WILL BF THE GUESS
54 [F G<X THEN PRINT “YOUR GUESS IS TOO SMALL®
60 IF G>X THEN PRINT ®YOUR GUESS IS TOO BIG*
. 78 1G G=X THEN GO TO 99
80 GO TO 3@tREM NOT A CORRECT GUESS, GET NEXT GUESS
oA PRINT #YOU WIN, LET“S PLAY AGAIN.%
123 GO TO 2AsRFM GET A NEW SFECRFT NUMBFR

>HiUN

WHAT IS YOUR GUESS? 5@
YOUR GUESS 1S T0O BIG

WHAT IS YOUR GURSS? 25
YOUR GUESS IS TOO RIG

wWHAT IS YOUR GUFSS? 12
YOUR GUESS IS TNO SMALL

wWHAT IS YOUR GUESS? IR
YNUR GUFESS IS TNO SMALL

WHAT IS YOUR GURSS? 24
YOU WIN, LET#S PLAY AGAIN,

And so0 on...

8.5 -Fxercise

. Rewrite Line 77 to combine the functions of Lines 76 and B4 makina the
nroagram one statemant shorter.-

Answeres are in Anpendix A

1-61

CHAPTER 7

1.1 Program Loops

This section of the orimer deals with Program Loops., The following
program causes NSC Tiny BASIC to orint out the first ten positive
,integers and the squares of those integers, While not exactly
“intriquing in its mathematical subtlety, it helps point out a few
useful] techniaues in nrogramming,

The following is an example of & cumbersome way to achieve the results
described aboves?

>PRINT |
]

>PRINT 1I#
I

>PRINT 2 _
2 -

>PRINT 2%2
4

>PRINT 3
3

>PRINT 3+3
9

And so on until...

>PRINT 10
L)

>PRINT 10%10
| B

>

The foregoing would get the results, interspersed with PRINT state-
mentst or, & nrogram could be written as followst

18 REM PRINT THE FIRST TEN NUMBERS AND THEIR SQUARES -
29 PRINT |

30 PRINT 1wl

48 PRINT 2

5@ PRINT 2#2

69 PRINT 3

T4 PRINT 3#%3

ATKI SV Y11 UilLlil eee

18@ PRINT ¢

193 PRINT 9%9
203 PRINT 1@
218 PRINT 1owla

RUN the programs the following is what your RUN should look likes

>RUN

d so on until

VI OWHBN ===

Not a very readable chart, is it? Results that are hard to read or
interrret decrease the valus of the output., The answer must be
communicated to those who need the results, By usinog a comma to keep
the number and i{ts saguare on the same line, and bv using a PRINT
statement you can write a much imoroved poroqram,

Note, in the followina, the use of a comma in PRINT statements to
sepnarate the number and the number sguarecds:

1@ REM TARLE OF NUMBFRS AND THEIR SQUARES
24 PRINT # N N SQUARED ®
36 PRINT 1, 1%l

43 PRINT 2,2%2

SA PRINT 3,3%3

6% PRINT 4, 4%4

70 PRINT 5,545

83 PRINT 6,6%6

94 PRINT 7,7%7

7@ PRINT 8,848

11@ PRINT ©,9%9

129 PRINT 1A, &%

If vou store the above nrogram in the INS8@73’s memory and RUN {t,
the results would be:

1-64

R D . O EE T

v

NOMBWN =ZX

UN
? SQUARED
4
9
16
25
36
49
64
81
g 100

>
The above program is much easier to read than the first two oresented
in this chapter. Each number is nrinted side by side with its snauare
in the order they ampnear in the PRINT statement. For examples
The statement, PRINT 7,7%7
Causes NSC Tiny BASIC to orint, 7 49
You now have enouch tools to write a very short proaram to nrint
numbers and their saquares. The idea is to write short ornarams that do
a lot of work., Read the following nroaram, and then try it on your
computer. Type in all of the RFMarks as they will help to explain what
is haopening. Remember, RFMAarks are for peonlet the comnuter simnly
ignores them.) .
' 1d REM A PROGRAM TO PRINT SUCCFSSIVF INTEGERS AND THEIR SOUARES
15 REM PRINT A HFADING
17 PRINT ®» 1 1 SQUARFD*®
2% REM USE A VARIABLE, I, TO HOLD THE VALUE OF THF NU4RER
30 RFM TO BF SQUARED. START THE VALUE AT ONE
47 I=|
5?7 REM NOW THAT I HAS A VALUE, PRINT IT AND ITS SQUARE
60 PRINT 1, Ixl
74 REM ATID ONE TO THE VALUE OF 1, TO CREATE THE NEXT LARGFR
B2 REM INTEGER, SO THAT IT AND ITS SQUARE CAN BE PRINTED
on REM UP IN LINE 60
190 I=]1+)
114 REM NOA THAT THF VALUE OF 1 1S ONE LARGFR, GO TO LINE 60

120 GO TO 69

1-65

After you understand how it works, tyne {n the program (or at least
this abhreviated form) without the RFMarks.

Try the following short form of the program on your INS8A73s

17 PRINT ® 1 I SQUARED*

4 =]

6A PRINT 1,1l
192 I=1+1

12¢ GO TO 60

Do you see what is going to happen? Did you remember to clear out any
old program with NEW?

Do you have the program fiqured out? If not, foilow the arrows?

>HUN
17 PRINT 8 I I SQUAREDH
49 I=1 Lines 17 and 43 are done once.

66 PRINT 1,1%] Lines 60, 137 and |12@ are “in the

‘looon’®, They are repeated again
' and again ...{until you press the
189 J=]<+1 BREAK key).

s 120 GO .TO 6@

3

?.2 Exercises

4

iI'. If Line 17 is changed to read 17 PRINT % N N SQUARFDY how would
this change the results? .

2. Wnhen you RUN the proaram, does NSC Tiny BASIC automatically stoo
after printing the first ten positive integers and their squares?

3. Khat is the laraest value of I for which the nroaram will qgive the
correct answers?

Answers are in Appendix A

7.3 IF Loons

The program does not satisfv the initial requirements, that is, to
orint the squares of the first ten oositive integers., AqQreed, it does
nrint the ten positive integers and their squarest but then it tust
keens on going, You want it to stoo automatically after printing 19
and |1® squared. The [F statemant will heln you to achieve your goal.

&

B e L T I PN SR

Instead of 120 GO TO 60
Use 1200 1IF 1 < 11 GO TO 6@

17 PRINT ® I 1 SQUARFD*
49 [=1

67A PRINT I,1wl
1800 I=]+1

128 IF I<1} GO TO 69

The IF statement (Line 120) can bhe reads #If | i{s less than eleven
then GO TO Line 62." Not stated, but implied, 1s that {f I is not less
than 1l, {in particular {f it {s 11 or more, then DO NOT GO to Line 64,
but just go on to the next line, There is no next line, so the prngram
will ston.

To make the program more comolete, add{ the STOP statement, This
statement, -when executed, stoos the program. Of course, as yvou have
seen, the nrogram stops if there is nothing else to do, Occasionally
it Is necessary to deliberately stoo a oroaram., It 1s also useful to
nut a STOP statement at the end of a nroaram just to mark the end of
that program, Add a STOP statement tn the end of the oroqgram to
compute sguares,

17 PRINT » 1 1 SQUARED*

49 PRINT I=i

6 PRINT 1,1+l
100 I=1+1
120 IF <11l GO TO 69 ,
999 STOP <4 The STOP statement.

[

Any line number from 121 to 32767 could have heen used for the STOP
statement, 999 was arbitrarily chosen. It is often used to save the
orogrammer’s having to retype the entire #STOP* statement if he wants
to add to the bottom of the existinag oroaram. The following {s a RUN
of the above nroaram,

>RUN

I SQUARED
|

4
9 NSC Tiny BASIC comnuted and printed I and I sguared
;g for I=t, 2, 3...1% Aand then stopoed automatically.
36

49

64

8l

160 Vo2

STOP At 999

QXD PN DN =

1-67

1.4 Exercises

1. What will hapoen if you change Line 120 to 120 IF I < = 18 GO TO 60
and RUN the prcocgram again? (Try it on vour system,)

2. What will napoen if you chanage Line 120 to 120 IF I < 17 GO TO 6m,
and RUN the program again?

3. What will haopoen if you mistvoe Line 120 as 120 IF I < 11 GO TO
4% and ran the program again?

4, What would be the results of RUNning the following orogram?

18 1=1
27 PRINT I,IxI1tI=1+)131IF I<11 GO TO 20
99 STOP

For answers, see Appendix A

7.5 FOR NEXT Loons

When a nroaram contains a statement that is executed more than once,
then that proqram contains a LOOP, Nearly all the orograms in this
book contains loons., In fact, it is the loop that makes brogqramming
so powerful, If each statement could only be used once, then oro-
qgqramming would he exceedingly tedious. As has been seen, proavammers
tend to write statements that can be used repeatedly rather than only
once.

The very simple loops

17 PRINT 4
20 GO TO 1@

o
will run and orint 44s indefinitely., Most loops have some facility for
endina gracefully, What does the following nroaram do?

12 1=0

20 lI=14+]

37 PRINT I3

4% IF 1 < 1o THEN GO. TO 2o

The following nrogram does the same thing:?

12 1=

23 PRINT Igs

30 I=[+|

47 IF I < 1 THEN GO TO 2@

Looos are so common that NSC Tiny BASIC provides a sho?thand for
writing them, The next proqram does exactly the same thing as the

‘previous twos

19 FOR I=1 TO I@ STFP I——
20 PRINT+1s ~---This is'a FOR NEXT looo.
30 NEXT 1 —— :

RUN the FOR NEXT loop:

>RUN .
| 234567689180 The FOR NEXT loop caused NSC Tiny

> BASIC to print values of | fors
I equals one (1) to

I equals ten (10)
in steps, or increments, of one,

The numbhers go across the nage instead of down because the PRINT
statement ends with a semicolon (t). Try the program with a PIINT
statement that doesn’t end with a semicolon and you will get the

followings

>RUN

~NON bW -

-0 ®d
=N

>

The FOR statement sets up the loon, It soecifies what the variable
*(often called the control variable for the loop) is to have for its
initial value, then the final value and finally how much it {s to bhe

incremented sach time through the loon,

The NEXT statement is the bottom of the loop, and says to find the next
value of the control variable and continue execution at the statement

iwmmediately AFTER the corresnonding FOR statement, if the control
variable has not yvet passed the final value,

To orint the de numbers from | to |1? (obviously |# {tself will not be
one of them) the following looo could he used.

im FOR I=| TO 1& STEP 2

20 PRINT 1: = Semicolon causes numbers to be printed
3 NEXT 1 across the line,
1 35709 < NSC Tiny BASIC is STEPning by 2.

>

1-69

The step size can be negatfvet

14 FOR [=56 TO 42 STEP -3
28 PRINT I3
3@ NEXT 1

Refore running this oroaram, figure what its outout should be, The
rule iss the FOR NEXT loop always starts exactly at the first value,
and will not go beyond the sacond, Fach time through the loop the STEP
is added to the index., In these simple orograms the variable I has
hean the Index. (0Of course, if the STEP is negative, adding it to the

index makes the index smaller,)
The last nrogram printss

56 53 5@ 47 44

You don’t always have to use I. You can use any variable in a FOR
statement as lonn as you use the same variahle in the corresooming

NFXT statement,

12 FOR K=1 TC 3 STFP |
22 PRINT #HIP HIP HOORAY#
3% NEXT K

>RUN

HIP HIP HOORAY
HIP HIP HOORAY
HIP HIP HOORAY

>

If the STEP size §{5 one, the STFP clatise can be omitted,

12 FOR A=0 TO 7

20 PRINT A3
" 38 NEXT A
i >RUN
@1 234567
>

The FOR NEXT loon makes it easy to run off tables, such as the table
of | and 1 SQUARFD,

- 14 PRINT » [1 SQUAKED®
28 FOR I=1 TO 5 ww=mmmee=Since STEP size is I, it’s omitted,

33 PRINT I, Ixl
40 NEXT 1|

1-70

T e e N et

U'l-hUM-HZJ

>

Additional
expression

19
20
30
47
5¢

»R
1
>

The STEP ¢

10
27
30
40
50
60

>R
1
>

>RUN .

I SOUARED » ‘ : _ ‘

i To get a table for I-=1, 2, 3,...,14,

4 change Line 25 tot 2% FOR I=(TO &

9

16 To get a table running from 128 to 127
25 . change Line 20 tot 2@ FOR [=100 TO 120

iy, the starting and entina values can bhe variablns or
S. Here are two examples:

A= tad L=2

R=5 2@ =3

FOR X=A TO B 3% FOR S=L»L TO UxU
PRINT Xs3 49 PRINT 5%

NEXT X 53 NEXT S
UN >RUN

2345 456789

: . >

an also be a variable or an expressions

A=]

B=13

C=2

FOR X=A TO B STEP C

PRINT X3

NEXT X
UN

3579 11 13

Although the apnlications may not be readily aoparant, FOR NEXT loops

may be Mne
lavyers of

loons inte

14
29
32
47
52
64
14
80
°a
909

sted? up to four levels. This means that you can have four
loops within loons. An example of this i1s shown below, The

ract to orint the numbers @ to ©9 in a square orid,

RFEM SQUARF MATRIX GRID. NUMBERS 1 TO 9 ARE PRINTED
REM ACROSS THF PAGE, THEN A CARRIAGE RETURN,

REM THEN NUMBERS 14 TO 19 ETC.

FOR I= TO 9o STEP 1AtREM TENS LOOP

FOR J=0 TO 9:REM UNITS LOOP

PRINT I + J3sREM PRINT ACROSS PAGE

NEXT JsREM END OF "INNER® LOOP

PRINTtREM CARRIAGE RETURN

Ng%gpl'REM END OF OUTER LOOP

1-7

@ | 2 3 4 5 6 7 8 14

20 21 22 23 24 25 26 27 28 29
3 3y 32 33 34 35 36 37 38 3R
40 41 42 43 44 45 46 47 48 49
5% 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
T 71 72 73 74 715 16 17 18 79
8@ 81 B2 B3 R4 BS5 86 87 A8 BKY
oA 9 92 ©3 94 95 06 97 98 69

Loons cannot crnss each other for obvious reasonss therefore, if you
write?

12 FOR I=t TO 1o
26 FOR J=1 TO 19
30 NEXT I
473 NEXT J

vou will get a FOR NEXT error message (ERROR 14) upon execution of
Line 30, .

7.6 Exercises

For each orogram, first fiqure out what you think NSC Tiny BASIC will
do, then RUN the orogram and verify your thinking. '

1. 18 S=A 2e & P={
24 FCR X=1 TO 5 24 FOR X={ TO 5
30 S=S+4K 30 P=PwK
4% PRINT K,S 47 PRINT K,P
5 NEXT K 54 NEXT K
3. |9 S=0 4, 16 p=l
27 FOR K=1 TO 5 206 FOR K=y TO 5
30 S=5+K 30 P=pPxK
49 NEXT K 43 NEXT K
5@ PRINT S 5@ PRINT P

Each of the following orograms requires an INPUT value for the
variable, N, For the values outguess NSC Tinv BASIC then verifv

your results,

5. 12 INPUT N 6. 14 INPUT N
20 S=@ 24 P=| -
3% FOR K=] TO N 3# FOR K=) TO N
408 S=5+K 40 P=P*X
5% NEXT K 50 NEXT K
6@ PRINT N,S ' 6@ PRINT N,P

Try 1t for N=7 Try 1t for N=7 and N=9

1-72

7. Write a short nrogram to comoutes and print the value oft

2 2 2 2
1 +2 +3 4 ...4+N

for an INPUT value of N.
>RUN

N=2 5
SUMSQUARED = 55

>
Answers are Iin Aopendix A

7.7 The DO Statement

This 1s a simple statement that instructs NSC Tiny BASIC to DO a
function UNTIL another condition is met, It has only one forms

>»340 DO

Nothing ever comes after the word D03 somewhere later on in the
program there is a statement UNTIL, for examnle:

>504 UNTIL (some arfthmetic instruction goes here)

. The l1ine numbers are only examnles. The UNTIL statement acts just
.11ke a GO TO which causes execution to nroceed from the DO state-
ment = whenever the value of the arithmetic expression eyuals zero,

The following program:

>1a DO .

>20 PRINT “HFLLO*
»25 Na=|

30 UNTIL N=@

orints the word HELLO over and over until]l you stoo the oroaram,
If instead, you had said:

»>1® N=5
»20 DO
- >37% PRINT ®THIS ONE STOPS SOON®
>40% N=N-|]
>5@ UNTIL N=2

the message is printed out five times. It is Interesting to try this
program with Line 3@ changed to PRINT N, To understand how it works
you must remember that an exoression such as N=@ has a numerical value.
It is @ as long as it is false, Thus, when N is not zero it is false
to say that Ns@, So the exoression N=A has the numerical value @,

The UNTIL acts like a GO TO hack to Line 20, but when N is indeed zero
then the expression N=3 s true., When an exoression is true its value
is not zero, but =1, So the UNTIL does not act like a GO TO and the
program ends,

1-73

NSC Tiny BASIC uses the notationt
X=6

in two different ways. If it i{s a statement, where the X 1s the first

item on the line.it means %"]let the value of X be 6% but.if the notation
X=6 is used as part of an exoression - that is, not as the first item S
on the tine - then it means "see If X is equal to six™ and if X is

enual to six then the whole expression (X=6) takes on the value -1,

This 1s similar to the test in an [IF statement,

The converse of this i1s also usable, that is, a NN,..UNTIL loon can
terminate In any of the followinng with the same effects

UNTIL K=N

UNTIL K=N=0

UNTIL #A=K-N

UNTIL K=N (which automatically has a value of zero allowing
: the lcocop to he terminated)

For reasons of clarity, only the first and third examples should be
userd, In the following?

>1@ G=3
»208 G=G=3

>34 PRINT G

{would be a very confusing thing to write and not at all recommended)
the value -1 would be onrinted, as Line 2% would make the value nf
equal to (G-3) which is true, and thus has the value -1,

For the most part, the ambiocufty mentioned can be safely ignored,

and the UNTIL statement taken at “face value® where you know that the /
loon will be done over and over again until the indicated condition is
satisfied. The nair of statementst

10

UNTIL K > (N/2)

will execute whatever {s hetween them until it harmnens that K is qreat-
er than half of N, (Remember that NSC Tiny BASIC only does inteqer
arithmetic so that N/2 means the integer nart onlv, any remainder or
fractional part is ignored.) DO UNTIL looos, like FOR NEXT loons, can
be nested, but where FOR NEXT loons can qo four deen, (four lavers of
of loops) DO UNTIL s allowerd eight levels of nesting.

7.8 Powers Of Two

The following are three orograms to compute and orint the oowers of 2
from] to 64, inclusive.

174

Program number one uses an IF loon,

178 REMARK POWERS OF TWO, PROGRAM ONE
115 P=|

12@ PRINT Pt

130 P=2+P

140 1IF P<—6'4 GO TO 120

999 STOP

Program number two uses a FOR NEXT loon.

:?2 gEfARK POWNERS OF THO PROGRAM TWO
1200 FOR K= TO 6

130 PRINT P

140 P=2+P

154 NEXT K

909 STOP

Program number three uses a DO UNTIL loop.

120 REMARK POWERS OF TWO, PROGRAM THREE

1173 P=|

124 DO

130 PRINT Ps

149 P=2%pP -

154 UNTIL P>64 =~ = = (Also try UNTIL P=128 here.)
y 999 STOP -
These three programs produce exactly the same results. If you enter
any of the above and tyne RUN, here {s what happnens:

. >RUN
1 24816 32 64
>

Try to modify each proaram to get oowers of 2 from | to (28, Then do
it backwards, aoet vowers of two from 64 to |.

IF Looo
120 REMARK POWERS OF TWO, PROGRAM FOUR
1@ P=64
124 PRINT P3
13¢ P=p/2
140 IF P<! GO TOi20
999 STOP

FOR NEXT Looo

@3 REMARK POWERS OF TWO, PROGRAM FIVE

11% P=64

12¢ FOR K=6 TO @ STEP -1 ———=(or FOR K=o TO 6)
130 PRINT Ps

143 PmP/2

158 NEXT K

999 STOP

1-75

D0 UNTIL Looo

180 REMARK POWNERS OF TWO, PROGRAM SIX
113 P=64

126 DO :
130 PRINT Ps

14@ P=P/2
153 UNTIL P<l --—(Also try UNTIL P=A here)

999 STOP
&
The three programs all produce the same results,

>RUN
64 32 16 B 4 2 |

>
Modify each orogram so that NSC Tiny BASIC tynes nowers of 2 from (28

to 1.,

1-76

_ CHAPTER 8
‘B.| Subroutines

As you learn to orogram, you will find that vour proqarams will in-
crease in sfize until they become unmanageable. When that hanoens,

it’s time to break them up into functional blocks. Often, you will
find that some of those functional blocks are used in several nlaces

in your nrogram, Rather than repeat them each time, a %subroutine®

can be used. A subroutine is just a section of NSC Tiny BASIC
statements performing some ooeration required at more than one place in
the program., The GOSUR statement i1s used to transfer control to the
subroutine and the RETURN statement is used to return contrnl to the
.place where the subroutine was called,

As with FOR and NEXT, and the NO and UNTIL statements, GOSUB and
RETURN are a pair that are always toaether. The statementt

125 GOSUR 916
acts exactly like the statements
175 GO TO 91@

exceot that the computer rememhers the line number (in this case 125%)
of the statement that made {t oo to Line 919, so that after the sub-
routine is finished the comouter can resume where it left off. For

example, when the nprogram executes a RETURN statements

32A RETURN

the computer knows to jump back to the statement immediately after
Line 125 - wherever {t is,

The followina is a short proaram to demonstrate the use of the GOSUB
and RETURN statements, Try it on your INSRA73.

130 N=| o i s
185 GOSUB 2% -
110 N=2 -
115 GOSUR 20 -
1273 N=3 -
125 GOSUBR 209 -
1300 N=4 - Main Program
135 GOSUR 200 -
143 N=? -
145 GOSUBR 249 -
159 N=3 -
155 GOSUB 20 -
160 FND ——————aeed

20% PRINT ®#THIS IS NUMBER ”.N:r-------—-Subrnutine
219 RETURN ’

1-77

20N the above program, the results should look like thiss

>RUN
THIS IS NUMBER 1
THIS IS NHOMBER 2
THIS IS NUMBER 3
THIS IS NUMBER 4
THIS IS NUMBER 5
THIS [S NUMBER 6
>
The statements 113 GOSUB 202
tells NSC Tiny BASIC: GO TO 1line 205, but remember that you
came from Line 1A, When you come to a
RETURN statement, return to the line
next after Line 110 (which is Line 115),
The statements 12088 GOSUR 20
tells NSC Tiny BASIC: GO TO Line 2@, but remember that you

-

came from Line 128, HWhen you come to a
RFTURN statement, return to the line
next after Line {20,

The rest of the GNSUBs operate In a similar fashion, GOSUB, when

used properly, can eliminate the tedium of having to retype a routine
wherever it may be used in a large program. Subroutines may call other
subroutines, this i3 called nesting and may look like thist

, 19
. 29
¥ 30
- 40
50
60
70
89
o0

299

I=12

GOSUB 20w

I=5

GOsuR 2m9

A=2

BE=3

GOSUB 3009

STOP

REM END OF MAIN PROGRAM

REM SUBROUTINE TO COMPUTE NUMBER OF STARS TO PRINT

210 B=1l
223 A=l=2

230
247

302
31
320

GOsSuUB 30MA
RETURNSsREM RETURN TO MAIN PROGRAM

REM SUBROUTINE PRINTS B—A STARS
FOR J=| TOQ B-A
PRINT "%y

330 NEXT J

340

PRINTSREM PRINT A CARRIAGE RETURN

35@ RETURN

1-78

ﬂ'

N G

Notice that sometimes the subroutine at location 303 is called by the
subroutine at location 2, and it ts called once by the main nroaram, '
Whomever calls that subroutine i{s where the nroqram returns on a

RETURN statement.

Subroutines may be nested up to eight deep.

8.2 LINK Instruction

The LINK lnﬁtruction allows vou to transfer control from an NSC Tiny
BASIC nrogram to an INS8#73 assembly (machine)]language subroutine,

Suppose Bill Counter has given you Aan assembly lanquage subroutine that
i{s perfect for counting widgets, You could convert Bill’s program to
NSC Tiny BASICt: but since vou don“’t understand Bill“’s system for
counting the widgets, and since Bill’s system works, and since assembly

- languaage runs faster than NSC Tiny RASIC, etc., Aall you have to cdo is
use the LINK instruction to transfer control from your NSC Tinv BASIC
nrogram to an assemhly lanquaqge subroutine,

A statement such ast

>13 LINK #1Rp2

causes transfer control to the routine that starts at address location
hexadecimal 1807, There is a RET instruction at the end of the routine
that returns you to your NSC Tiny BASIC program. RET is an assembly
klanquaae instruction that acts like the NSC Tiny BASIC RFTURN
#nstructions it returns you to the line number following Line I1& (the
LINK statement). ’

Examnles

R >1% LINK #1800 @¢— NSC Tiny BASIC trans-
»20 IF A=3 THEN PR ®#SENSE A 1S LOn» fers to address #1300
»3% IF A=1 THEN PR ®SENSE A IS-HIGHtki to read sensor.
>90 STOP
>RUN ~—Proqram transfers back
SENSE A 1S HICGH to NSC Tiny BASIC
STOP AT 99
>RUN
SENSFE A .IS LOW
STOP AT 99
1 +TITLE SENSE Assembly Language
2 a0 - =0 1800 SHEXADECIMAL " “
3 1RO 06 LD A,S " ”
4 1801 DA1A AND A ,.=16 u u
5 1803 6CA2 BRZ LON " »
6 1805 C4001 LD A, =] " "
7 1887 CAP® ST A.B,P2 N "
8 18A39 5C RET@4—(This qets vou back) " | “
9 fad L END n)

1-7¢

s

&

3.3 DELAY

Often, a programgneeds to give itself a pause to allow some external
event to occur, or tust to let you think for a moment. o

For example, take the case where you have written a routine to ring
the bell when your results are back from another nrogram, If the nro-
gram is a long one, you can go talk on the telephone until it is fin-
ished and you can hear the bell ringing. If the nrogram is ended in a
loop1?

987 PRINT ®CNTRL G*3sREM RING BELL
997 GO TO 98AtREM DO IT AGAIN

the terminal will continue to ring the bell, or the TIY will sound like
an alarm clock, until you get away from the ’phone and stop the nro-
gram,

A hetter way to handle this situation is to waste some time before the
bell is rung again. Many orograms no this with loons that waste times

. ©R8@ PRINT "CTRL G*31:REM RING BELL
B 094 FOR I=1 TO 180AsNEXT [tREM WASTE TIME
1398 GO TO 98A*REM RING BRELL AGAIN
unfortunately, this kind of time wasting 1s not orecise and the number
of times you go throuah the loop must be worked out by trial am error.

© NSC . Tiny BASIC has an inherently more orecise method of generating time :}
delays. This method is the use of the DELAY instruction, which can e

stop the processors oneration for | to 143 time units, If your INS

87273 is clocked by a precise 4 MHz timebhase, these time units will be

exact milliseconds., The examole system in Section 3 of this manual

uses such a crystal.

If you wanted your end-of-program bell to rina only once oer second,
as a gentle reminder for you to go to the system, all you need do {is
to change the initial example nrogramt

987 PRINT ®CTRL G"s:REM RING THE BELL
985 DELAY |AG3sREM WAIT ONE SECOND
99@ GO TO 98AsREM DO IT AGAIN

Notice that the number (or expression) that follows a DELAY instruction
i1s equal to the number of milliseconds required. If, however, vyou type
"DELAY & the microinternreter will default to the largest possible de-
lay of 1347 milliseconds,

*

1-80

—

8.4 The ON Statement

Sometimes a orogqram can’t respond quickly enough to a stimulus through
normal program operation, For example, take a system which must count
widgets while calculating Pl to a million decimal places. The calcu-
lation of Pi will obviously take the "smartest® computer hours of cal-
culations of Taylor series polynomials., The widgets are passing bv on
a conveyer belt at the rate of three oer minute., Should the orogram to
calculate Pi take a peek during every stage of its calculations just to
look for a widaet? The obvious answer 1s no as this would waste tno
much times and the hours-~long orogram might end up taking A week to
execute, :

The INTERRUPT can break into a progqram, perform some time intensive
function, then allow normal opoeration to continue without any inter-
ference with the main program, An interrunt operates the same way you
would {f you were reading a book and the “phone rang. First vou’d
save your place in the book, then you’d talk on the “ohone until vour
business was done, then you would hanq up and go back to yonur book to
the place where you left off .

The INSA%73 handles interrupts with the ON statement. When you says
1@ ON | 250

you’re saying, "If something (widget detector) puts a # on inout SENSA/
INTA on the INSB#73, act like you first encountered a GOSUR 2504,

There are two inputs on the INSA?#73, INTA and INTB. Corresnondingly,
there are two ON statements, ON1 and ON2. Unfortunately, the INTA {n-

“nut 1s also used for serial inout for the RS-232 or TTY terminal, This

means that the ON statement can’t be used {f you want to use a terminal

~ . with an NSC Tiny BASIC system, The ON instruction is, however, very
ﬁﬂseful in a ROM-based direct executing system.

:{h fnterrupt may be disabled at any time by executing the command:

ON 1 @&

which acts only on INTA. This can be used to nut.the microinterpreter
into a #Don’t bother me, [’m busy® state.

The following is a program that counts how much time has elansed until

-an iInterruot occurs, and, how many times it has been interruoted:

1d REM TURN ON INTB

20 ON 2 200

3@ A=A+1sREM HOW LONG SINCE LAST INTERRUPT?
4% GO TO 3»sREM KEEP COUNTING

5% REM FND OF MAIN PROGRAM

2773 REM START OF INTERRUPT ROUTINE

212 REM A "“GOSUB* TO THIS LOCATION IS GENERATFD

220 REM BY A HIGH TO LON TRANSITION ON INTB

23#@ B=AtREM STORF TIME BETWEEN INTERRUPTS

240 C=C+|tREM COUNT HOW MANY INTERRUPTS HAVE OCCURRFD.
257 A=@tREM INITIALIZE THE COUNTER

26A RETURNSREM KEEP WATCHING THE TIME

1-81

Although this program has no practical application, 1t should show you
now to use the ON statement well enough to enlighten vou about the

basics of interrunts,
8.5 The STAT Function

There 1s a function in NSC Tiny BASIC which allows you to operate
directly on the Status Register of the CPU. The status register can be
loaded, or examined, through the use of the STAT function. This {s
another way of setting the interrunt enable bits on the nrocessor, al-
though it does not allow the ass{ignment of a l1ine number for the inter-
runt service routine, Therefore, the STAT function is not recommended

for interruot servicing.

The bits of the Status Reglster are defined as followst

.. BIT NUMBER FUNCTION
7 CARRY Not recommended for use
6 OVERFLOW in NSC Tiny RASIC
5 SENSE A/INTA\ May be examined as sense
4 SENSE B/INTB./ lines by the STAT onerator
3 FLAG 3 May be set using the
2 FLAG 2 STAT operator
) FLAG
] INTERRUPT Not recommended for use
ENABLE with NSC Tiny BASIC

The SENSE A and SENSE B lines may be used as inputs and are read-nnly,
If a serial terminal is being used to program the microinterpreter,
SENSE A will already be occuoied and SENSEB will have to be used.

The FILAG 1, 2 and 3 outputs Are write-only, and FLAG 2 and FLAG | are
used for the Read Relay and RS-232/TTY outputs respectively. There-
fore, only FLAG 3 is available, You can see how they operate if you
connect simple devices to one SENSF input and one FLAG outbput.

Assume that you have a source of slowly changing ®i’sY and "3’s% comino
into SENSFE B. A simple switch would he a fine examnle, Also assume
that an audio amolifier is attached to FLAG 3 so that you may hear the
output. With the following nrogram you can detect the switch nosition
with your earst

12 REM SENSE B TO FLAG 3 PROGRAM
- 27 A=STAT AND #10tRFEM SENSE B BIT ONLY
34 IF A># THFN GO TO 2@sREM SWITCH OPEN, NO SOUND
4% STAT=STAT OR #831REM SET FLAG 3
5% DELAY S51RFM 133 HERTS HALF WAVELENGTH
60 STAT=STAT AND #F7+REM CLEAR FLAG 3
7@ DELAY 53GO TO 2A@sREM TEST SWITCH AGAIN

thus, you can use the STAT function to control minimal 1/0 in your
system,

1-82

R R L e et R et - . -

“SPsn - b, = e e ®

»

CIf you insist on using STAT to set the Interrupt Enable bit, be aware
that that bit will not be set until after the end of the next in-

struction. This gives you some time to preocare.

8,6 Multiprocessing, INC (X)), DEC «(X)

The INC and DEC, or Increment memory location and Decrement memory
location instructions are orovided to facflitate using NSC Tiny BASIC
in 8 multiprocessor environment,

Multinrocessing {s an art in itself and 15 considerably beyond the
scope of this primer. If you require more information on multiporocess-
ing, refer to the #®73 Series Micronrocessors User“s Manual#4,

I1f you are familiar with the techniques of multinrocessing with the
INSBA7A series of microprocessors, then you are familiar with the
attributes of the ILD (Increment and Load) and DLD (Decrement and Loard)
instructions. INC and DEC provide the same function fn NSC Tiny RASIC
format. The Instructions are non-i{interruptable and can be used for
semaphores between microprocessors,

If you choose to use the INSRA#73 In a bus-coupled micronrocessor system
one orecautionary note is givent the variable RAM at location X’ 0¥2-
X?I1AFF must be separate for each processor on the bus. If this is not
observed, FOR loops, subroutines, and even the variables A through Z
will become hopelessly garbled. All other external memory may be

shared,

8.7 CLFAR

" The CLEAR statement is used to 7zero all variables, and terminate all

oending interrupts and looos. This statement should be used with ex-

Agétreme caution as it can terminate program execution, When orooerly
.ywused, it can be a boon in setting up initial conditions within a oro-

gram,

CHAPTERS

Q.1 Memory Organization

P

In order to use NSC Tiny BASIC, you must have an INS5B#73 system with a
% minimumn of 256 read/write memory locations needed to store the

variables from A to Z and to accomplish other housekeenina functions,
In most cases more memory 1is neededt a typical system should have at
least 2K (274B) bytes of RAM. Each memory location stores one byte,
and in a typical system with 2K (2448) bytes of RAM, each Incation has
a unigue memory address running from 4496 to 6143, The microinterpreter
will only see RAM locations that are contiquous (non-stoo with RAM
starting at the location 4094,

The memory is organized as followst

2.

The first 2568 locations consist of NSC Tiny BASIC, in on-chip ROM
(Read Only Memory) on the INSR270 chip. In other words, NSC Tiny
BASIC consists of 2560 bytes of pre-programmed memory occunying
locations @ to 2559.

The next 1536 locations are unassiagned and can be used for ROM,
data RAM or I/C devices.

The next 256 or more locations, with addresses from 47494 to 65470
if desired consist of RAM (Random Access Memory, also called Head/s

Write Memory). This nart of memory serves two purnosest

a. Locations 496 to 4351 are used by NSC Tiny BASIC as a
"scratchpad memory®, They are not available for your use.

b. Locations 4352 to your last RAM location Are yours to use,
Khen you types

NEW #) 200
NEW

then store a program (with line numbers), your program is
stored in memory, beginning at location 4352,

If automatic ROM execution is desired after a RESET, the ROM oro-
agram must start at location BI92, and can extend up to 65471,

170 Aevices may be memory-mapned in any unused memory locations in
the ranges 2569-4395 and 4352-65470,

No RaAM or 1/0 device can occupy memnry location 65471, 170 devices
should not be maoned contiguous with RAM from 4096,

1-85

85,535
85,471 or -64

8192

NOTE 1.

NOTE 2.

NOTE 3.

Figqure 9=1,

1

2559

ON-CHIP RAM

i

MEMORY-MAPPED

1/0 DEVICES
/

FFFF
FECO O

{Any address localions
between 1100 and FFBE or
O0A00 and OFFF which are not
used by memory)

1rooo ()

RS /A1),

(UP TO FFBF)

AOM -
FOR AUTOMATIC
EXECUTION AFTER
A RESET

.

RAM (MINIMUM
= 256 BYTES)

NSC TINY
BASIC

{UP TQ FFBE)

1000 @

09FF

0000

RAM or /O devices must not occupy location
X' FFBF.

The microinterpreter will assume the only

avallable RAM is that which starts at location
X'1000 and ends at the first discontinuity en-
countered above that address.

Location X'FDOO mustbe used to set the baud
rate of the console device. I no console is
used. this location may be used as desired.

NIBL Memory Diagram

1-86

The following table summarizes the memory oraganization in a minimum
NSC Tiny BASIC system,

Table NSC Tiny BASIC Memory Organizatfon
LOCATIONS . CONTENTS
@ - 2559 NSC Tiny BASIC System (ROwm)
4896 - 4351 Scratchpad Memory, (RAM)
4352 - 6143 g::; Space. Your programs are stored

User space, locations 4352-6143 will hold 1792 bytest this is enough to
store apnroximately sixty NSC Tiny BASIC statements. Additional memory
can be addedt and, if your system has 4796 bytes of RAM, the user qoacp
locations run from 4352 to RI9I,

The memory layout for the example board is given in Section 3.
9.2 TOP Location

The first lncation that is free for your use has a special name, it’s
called TOP. The statements

>PRINT TOP
will cause the address of the first free location to be nrinted,

To see how TOP works, clear away any ol«d oroqram by typing NEW #1247
then NEW, print out the value of TOP, then store a line or two of any
orogram and try printing TOP agalin,

SNER #1020
>NENW
>PRINT TOP
4353 @--=-—--=Remember 4352 is the beqginning of Muser space".
A proqgram (even with no lines) takes un one byte.

>1@ REM THIS TAKES UP SPACE

>PRINT TOP
4 380 4—----Location< 4352 through 4379 are in "uyse", First
available is now 4384,

A lonaer proaram will use up more space.

SNEWN #100Q

>NENW

>PRINT TOP

4353 4-----==T0OP points to the heginning of NSC Tiny BASIC“’s
user soace,

1-87

>10 REMARK POWERS OF TWO
>114 P=1

»12A PRINT Ps

>130 P=2%p

>{400 IF P=64 GO TO 170
>999 STOP

>PRINT TOP
4440 4=—--=-=—Next available location 1s now 44409,

Remembher, the value of TOP is the address of the next available memory
location beyond the last byte of your NSC Tiny RASIC nrogram,

Choose a safe location far away from the small nrogram that you will
write shortly, for example location 5ami, You want to store a number
into location 57774, that 1is, you want to nut a number (say 55) at 5079,

>0507A=55

The 8 is the familiar %at® symbol and means "at the location®, {e-
memheyr, location 500@ {s an actual memory location and not an otnut
oort. If you could oeek into location 5037 you’d now find the number
55 resting theret however, since vou cannot "see into! locatlens,
tell NSC Tiny BASIC to print a copy of whatever is stored there.

>PRINT 6572732
55

Try some mare.

>5001237 4-~——Put 37 into location Sl

>PRINT 65001
37

>E507 2= 05 A0G+ 0500 |

>PRINT a5032
02

NDid you follow the last examnle? You previously had put 55 into lo-
cation 500 and 37 into 51, you cAan arkd them (85AA7+853¢1) and nut
the result into 5042,

Yoy can use @507y, a@5001, 85702 and so on just as vou use varlables
A through Z, exceot for one things

Numerically addressed locations can store one byte only.
They accent numerical values from @ to 255, inclusive.
You cannot store negative numbers or numbers larger than
255 Iin these locations,

AS you may suspect, the variables A through Z each occuoy two bytes
in the INS8A737s memory,

The following 1llustrates what would hapnen if you tried to put a
nunber larger than 255 into a numerically adiressed locations?

>85004=256

>PRINT 65004
A

>85005=2%7 Try some neqgative numbers:
and see the results.

>PRINT #5005
1

>@5M36=511

>PRINT @5006
255

Attempting to put a number into a memory location that is too large or
too small for that memory locaticn will not result in an error message.
The number will be treated modulo 256 (that is, it will be divided by
256 and the remainder put into the location).

One trick to using memory locations is to call them TOP+l, TOP+2 and so
ont as your proaram chanqges size, a8 notation such ast

>8(TOP+23)=211

is always above your proagram. A check for the top of memory can be
'-done easily using the IF statement (assuming that M {s the number of
the memory location you were about to use, and that your memory went up
to location 5143)1

>79 IF M>»5143 THEN PRINT "OUT OF MEMORY¥™
In summarys to put a value WY into a memory location M write

>8M=V

and the value of the memory location M is given by the exnression M,

The at sfgn (@) should be used with caution. Placino a value in memory
used by your orogram (at a location less than TOP) can cause the oro-
aram to "blow un®. ' This means that it refuses to work, and there may
be no way to LIST or otherwise preserve it. Even {if it doesn’t blow

up o;hﬂr insidious changes that can be hard to find can occur., Be
careful,

The foliowing lists the locations that should not be usedt

LOCATIONS

A to 2559 ROM (on—chip)

-64 to =) RAM (on=chin)

4996 to (TOP-1) nvroaram in our typical system

9.3 S5trings of Characters

An important feature of NSC Tiny BASIC is its abfility to input, outnut
and manipulate characters as well as numbers. As vou have already
seen, the statement:

>22(PRINT “FLOW OK#%
will cause NSC Tiny BASIC to orint the words:
FLOW OK
The information between quotes is called a string.

The computer can store strings, recall them and do other operations on
them as well. These ahilities are esnecially handy where the user of a
orogran should communicate in something resembling natural lanqguage,

It might be more convenient to have a user type YFS as an answer to a
question rather than have the computer tyoe "ENTER | IF YOU MFEAN YES.

OR @& IF YOU MEAN NOW,

To have a user of your program utilize string input, you have to first
decide where the computer will nut the string. The previously de-
scribed TOP function qives the first location in memory that is avail-
able to the user. If the program assignss

S=TOP

then S will he the address of the first location in memory that can be
used, In the followinag case it will be used for storing a string.
Nhen you want to work with strings instead of numbers, use the dollar
sign (s) to tell NSC Tiny BASIC to exnect a strina. The statementt

INPUT sS
stores whatever string the user tyoes beginning at location S, The

first character of the string goes right at location S, the next
character at location S+] and so on. Input stops when the RETURN kevy

is pressed. The code for the RFTURN key 1is stored at the last charac-

ter of the string. This is important as it allows you to find the end
of the string later,

) “er tne roiiowing program, nNoOote Tne > s51gn 1N L1Nes ¢ ang i,

" >NEW B '

>1?@ S=TOP+|1AB:tREM SET S TO POINT AT A FREE SPOT IN MEMORY
520 INPUT sStREM GET SOME CHARACTFRS

>3@ PRINT $StREM TYPF THE CHARACTFRS JUST OBTAINFD

>RUN

?ABC 4—ABC is the inout string.

ARC

>RUN

? SAM 123 @4———This is a California license plate number.
SAM 123

>RUN

2XAT#Q+% ! 4——You can use tust about any TTY character in
Yo TH#Q+! a string.,

> And so on, Try some of your own,

In the second RUN above, we tyned SAM 123 anrd pressed RETURN,
Therefore, a8 string of eight characters will be stored, beainning at
TOP+100, as followst

K LOCATION CONTENTS
TOP+1 0¥ S
TOP+121 A
TOP+132 M
- TOP+I®3 space
¥ TOP +154 !
L TOP+105 2
TOP +106 3
TOP+187 RFTURN key code

Remember, each location stores one byte, so each character or key code
is stored as one byte code,

In the following program, we use a string varliable SRt
SNENW
>60 R=TOP+IAtREM SET R TO POINT AT FREE SPOT IN MEMORY
>7% $R="ABCDEFGHIJKLMNOPQRSTUVNXYZH
>8A@ PRINT SR

»iRUN
ARCDFFGHIJKLMNOPORSTUVRXYZ

-0

In the preceding orogram, SR is a string variable, In Line 79, you
assiqgn it a string value consisting of the 26 letters of the alohabet,
Note that these letters are enclosed in quotation markss however, the
quotation marks are not stored as part of $R. The string in the sR
will be stored in TOP+i@® through TOP+35 and a RETURN key code will be
put into TOP+36 to mark the end of the string.

Add the following lines to the above nrogram, (don’t type NEW!)

>9% $H="HFLLO*

>1 03 PRINT sR

>RUN

ABCDE FGHI JKLMNOPQRSTUVWXYZ
HELLO

[t is your responsibility, as a programmer, to see that there is enough
space for strings. For example, add the following lines to the orogram
we are develoonings

>1 1@ E=TOP+12

>120 sE="123"
>137 PRINT sR:REM YES WE DO MEAN SR AND NOT SE
>RUN

ABC.....

HELLO

El23

Note the strange result when this part of the program is RUN, This
demonstrates that you have to be able to auess about how long strings
are goina to be when vou decide where to out them {n memwmory,

- Try other strings for SR and $E in this orogram, and see what con-
ditions cause overlao, and by how much. Change the constant in Line
110 as well, A few experiments will teach more than a thousand words

of text.

String characters are actually stored as numbers. There i{is a standard
numerical code for each TTY character, called ASCII (American Standard
Code for Information Interchange). This code is used by all many-
facturers of comouters and communication equioment., There are other
codes {n use too, but only by & small number of manufacturers, and they
make ASCII available to their equioment, It 1s easy to write a orogram
that will show the ASCII corde that NSC Tinv BASIC uses to store string
characters., This program will print the ASCII code for a character as
3 decimal numher after you have typed in the character and hit the
RETURN kevy.

>LIST
1@ REM PROGRAM TO PRINT ASCII CODES FOR TTY CHARACTERS

116 A=TOP+5003REM LOCATION TO PUT CHARACTERS

126 PRINT ®FACH TIME I TYPE A QUESTION MARK, YOU TYPEY
133 PRINT A SINGLE CHARACTER AND HIT THE RETURN KEY#
147 PRINT “*:INPUT $ASREM GET A CHARACTER

153 PRINT @AtREM PRINT ASCII CODE

1686 GO TO 14AsREM DO IT AGAIN

1-92

-,

>RUN
FACH TIME I . TYPE A QUESTION MARK, YOU TYPE A

SINGLE CHARACTER AND HIT THE RETURN KEY

A
65

78
66

7C
67

? @—This i1s CONTROL G (used ring the BELL). It is a
7 non-printing character.

7%
37

(4]
48

7t
49

72
50

¢ ?2 ... Your turn, exoeriment,

Using this program, look at the ASCII codes of the letters, numerals,
and special characters on the TIY keyboard. Remember, NSC Tiny BASIC

- ,:stores the RETURN character at the end of each string. How would you

jorint out the ASCII code for the RETURN key? (See Appemiix C)

Using the program as written, find the ASCII codes for CONTROL A, CON-
~JROL B and so on., There is a problem tryina to orint the code for
‘“CONTROL C. Can you deduce its value? (See Apoendix C)

The last string feature in NSC Tiny BASIC is string reolacement., If P
. and O are suitably defined (as pointing to memory) then a statement
such ass

>S00 $P=sSQ

will take the string starting at location Q and make a cooy string
starting at location P. Remember, it 1s un to the programmer to be
sure that there is enough room for this to occur., A real disaster can
occur if P=0Q+1, For instance, when Line 5 1s executed, the character
at location Q is placed in location P, But, location P is the second
location of 0! (Remember P=NQ+1,) This means that the first character
of O is now also the second character of Q. Since this is a string
copy instruction the next thing that happoens is that the second char-
acter of Q is conied into the second character of P, ,The second

1-83

S W s e e - m mai s pe e e o emea s

character of Q was just copied from the first character Q, so tnhe
second character of P {5 the same as the first character of Q. Now,
since P=Q+] the second character of P is the same as the third char=-
acter of Q. And so it goes, with the first character of Q being copied
over and over again, The process will never stopi 1if there was a
RETURN somewhere in P it will be "clobbered® by the constantly cooied
character. Soon all memory will be filled by this one character,

your oroaram will be destroyed, and, NSC Tiny BASIC will come to a
grinding halt., Be careful to avoid round robin situations like this

one., Try it once,

To compare strings Iin an IF statement you must compare the ASCII values
since NSC Tiny BASIC doesn’t allow direct comparison of strings. This
merely means using @ instead of $, and doing the comparison one memory
location at a time,

9.4 Exerclse

Arite a program to compare two INPUT strings and orint *THFE STRINGS ARE
FQUALY if they are, and "THF STRINGS ARE UNFQUAL® {f that is the case.
The following is a nmart of the programt

>LIST

13 REM PROGRAM TO COMPARE TWO STRINGS

118 PRINT YTHIS PROGRAM COMPARES TWO STRINGS AND TELLS*
1200 PRINT #YOU WHETHFR THEY ARF FQUAL OR UNEQUAL.*

1308 A=TOP+10

140 B=TOP+2m

150 PRINT ¥#:pPRINT ®FIRST STRING¥3sINPUT $A

168 PRINT #SECOND STRING*3:INPUT SR

1 7@ GOSUB 1#1@3sREFM GO COMPARF STRINGS

184 GO TO 154+REM GET TWO MORE STRINGS

1933 RFEM SUBROUTINE TO COMPARE STRINGS AND PRINT MESSAGE
1218 Your work begins here,..

Write the subroutine to compare the strinags and nrint the apnronriate
message. A RUN of the comolete program might look like thiss

>RUN
THIS PROGRAM COMPARES TWO STRINGS AND TELL YOU WHETHER THEY
ARE EQUAL OR UNEQUAL,

- FIRST STRING? ABC
SECOND STRING? ABC
THE STRINGS ARE EQUAL

FIRST STRING? ABC

SECOND STRING? DEF
THE STRINGS ARE UNFQUAL

—a e e LR s e w8 e e ——— e A 1,

~r

FIRST STRING? AB

SECOND STRING? ABC
THE STRINGS ARE UNEQUAL

FIRST STRING? ABCD

SECOND STRING? ABC

THFE STRINGS ARE UNEQUAL

FIRST STRING? A BC ==~-~=—The space is & part of tne string
SECOND STRING? ABC

THE STRINGS ARE UNEQUAL

FIRST STRING?

See Appendix A for answers

1-95

R s T L R it il ot Sl e iR T ————

S

CHAPTER 10

I#.1 Interfacing Other Devices To NSC Tiny BASIC

Devices other than the TIY or terminal can be attached to the examole
system via the memory bus. The INSRA73 Data Sheet contains the nin
assignments and interfacing date needed to talk to it vis the bhus,
This chanter Aescribes a simole circuit for you to wire un and nlug
into the INSRA73, Then you will be quided in writinn several simnle
control nrograms to exercise the circuft. Our circuit is very
gimple. consisting of a switch and a LED, with the INS8873 1{n

etween.

SWNITCH ———®| INSRA73 —¥| LED

An 170 device looks like a memory location both in bhardware and in
software. It decodes an address and accents or sends a hvte of data.

For this chaoter, the reader is assumed to be familiar with diqgital
logic, the various forms of binary and hexardecimal notation and the
other mental equioment usually acnuired by those who desiqn diaital
electronic circuits,

In NSC Tiny BASIC the 16 bit address corresnonds to the signed
numbers from =32768 to 32767. The hiagh-order bit, instead of being
treated as a siogn bit, becomes simply the high order bit of the
address. The simplest way to address locations above 32767 i< to use
the hexadecimal format., 32767 = #7FFF., Neaative decimal numbers

in NSC Tiny BASIC where the high order bit is the sign bit, are twos
complement 16 bit binary renresentations. Thus =1 (in binary 1111
111 111t 1111) used as an address would access the same memory
location as #FFFF, All in all, it is clearer to use hexadecimal
notation in NSC Tiny BASIC for acddressino high memory locations.

The timing considerations for address and data set un and strobes can
be found in the INSARA73 Data Sheet, Usually the NSC Tiny BASIC oroqgram
itself does not have to be concerned abhout outout timing as NSC Tiny
BRASIC 1s very slow with resoect to TIL or any other semiconductor
technoloqgy. Almost any clrcuit can easily follow the outout from an
NSC Tiny BASIC program., On the other hand, it is easy to feed data to
the comnuter too quckly for NSC Tiny BASIC to follow. For many control
applications, a response time on the order of a second is adeauate, and
in those cases NS5C Tiny BASIC can be used in an on-line device. Faster
response can be obtained by using interrupts or programming in the
INS8%73 assembly language, National Semiconductor Publication Number
uPG=420306255-A71 Aescribes the facilities nf the assembler,

Even if the assemhbler is to be used, NSC Tiny BASIC is still a good
way to check out the algorithms and the interfaces quickly and
inexpensively, Use of the assembler {5 considerably more time
consuming and costly than writing in NSC Tiny BASIC.

1-97

1.2 Harndware Interface

The circuit, shown below, is in two parts. The first part lights an
LED when the anorooriate NSC Tiny BASIC command s given, Instead of
an LED the circuit could have a relay, or other device that is to be
controlled, The LED, of course, could also be part of an onto-isolator
or the input to a solid state relay.

The NSC Tiny BASIC statements
>A#TFFF=1

puts the value 1 at location (in hexadecimal) #7FFF, This location,
instead of beinag a memory location, 1s used for 1/0, The hardware

you are constructing has to recognize when {t is heing addressed. This
occurs when the number #7FFF aooears on the address lines, labelled A®
through Al5 (pins 9 through (9 and 2| throunh 25 on the INSBAT3 As {t
haopens #7FFF in binarv is A1ttt 111t 11tE 111! so you want to recoagnize
when all address lines are hich. There are a number of ways to Ao
this., Three DMA!3l bus comparators would do, but vou may choose the
more elementary method of ANDino the lines toaether. To do this two
DM74LS3% elight fnput NAND gates are used. The ocutpnut of the DM74LS30
is low only when all eight inouts are high, Thus the address is
correct for the Adevice when the outnuts from both DM74LS397S are low,

The two outnuts from the DM74LS337S go into one NOR gate of the quad
NOR (a DM74LS32). This NOR {s high when both inputs are low. You will
need a low when the outputs from the DM74L53%7S are lows therefore,
AUMT4L.504 is used as an inverter,

Now the clrcuit csn detect its address, but all kinds of signals apoear
on the address bus when a program is running. Therefore, another line
NWDS (pin 6) 1s on the bus. This line is normally high but goes low
when the CPU puts an address on the bus as part of a memory write in-
struction. This is the only time that you want the circuit to "look
at" the address lines. Another section of the DM74LSA2 detects when
the address is #7FFF at the same time NWDS is low. At such times the
output of this NOR gate coes hioh. This signal clocks one of the flip-
floos of a DM74LS74, This is a D type flino-flop so that when the clock
makes an tpward transition the logic level at the data input {s cooled
to the Q outputs it is held at that level until the next positive edge
on the clock triaogers the flio-flop. Thus the CM74L.574 captures the
data from the bus on data line D# (oin 33). Any of the rata bits could
have been used, this 1s an arbitrary choicet itn fact, by using four
DM741.57475 all eight bits could be used,

This helf of the circuitry can be summarized as followst when the
prooer address anpears on the address bus, and NWDS is active, the low
order data bit appears on the outout, and is held there, This bit is
used to light an LFED.

1-98

-7

)

ZEZREZEEY

NRDS

DM7$L530

OMTILSIO

DM74L802

DM74LS04

DM74L502

!

Yce

5K DMTALE126

H >

NWDS

DMT74L502

Figure 19-|.

. Vce
5K
D PRE

1D
CLK a
CLR

|

DM74LSTA

LED 1/0 Schematic Diagram

Inout to a computer s simnler. A oullun resistor and & switch nuts a
loaic & (switch closed) or a leoaic | (switch open) on the input of a
TRI-STATE buffer (DM74LS126). This is the desired logic level we wish
to communicate to the comouter, The output of the buffer 1Is fed to the
same bit @ of the data bus. This demonstrates the hi-directional
nature of the bus. The same nin (oin 33 which was tust used for output
is now used for input. The comouter knows which is which by putting
another signal NRDS (nin 4) on the bus whenever it wants data,

When NRDS is low the comnuter expects the circuit vou are huilding to

nlace data on the data lines, The TRI-STATFE huffer i{s in its high-
imoedance state, thus not affectinn the bus, until a siagnal qates {t,
The signal is the NOR of NRNS and the address circuit already +e-
scrinhed, Thus the value of the switch {s put an the bus only when
NRDS is active and the correct Aaddress is on the address bus. Another
methnd is avallahle to the user of the example system shown in Saction

Je
1,3 Fxample System LED Flasher

An easy way to attach a switch and LED to the example board is shown
below, The LED is connected to the output of the 81%4s 1/0 port,
and a switch is connected to a different nort,

connector Pa-sw—* 5K \.
} ®

connector P3-333 connector P3-4R8 —
connector P3-50 connector P3-1

.Before any oroqgrams are ooerated, the INSRIS4, which controls tnese
nins, must he iritiallized, Reasoning behind this can be found in the
Data Sheet for that device, To set the INS8154 to outout to the LED,
tvnet

>0#9 AA 2=0

Changes will also have to be made in the precedinag programs to reflect
thatst

I, The switch is now read as bit @ of address #9AAl

2. The LED is now bit @& of location #94A|

3. The LFD now lights when given a # inout and goes dark when 1its bit
is set to a 1.,

dnce these few changes have been made, the LFD flasher problems can be
implemented for the circuit the same as the other,

There are many other ways of implementing these functions, and this
manual is not intended to instruct in hardware design, This circuit is
ocresented as material for a orogramming exercise only,

Placing an inverter between any of the address lines and the inhuts to
the DM74377S will require that hit to be zero in order to address this
device. Thus any address can be used if #EFFF is not annropriate for
your system,

-

13.4 Programming the C;rcult

It is assumed that you now have the circuit wired uo, ready to test,
To test the circuit, type the following NSC Tiny BASIC statements and
watch the results,

Turn the LED ON
>8#7FFF=| ~==-=—The LFED should come ON
Turn the LFD OFF
>@47FFF=0 =~===—The LED should qo OFF

Ooen the switch and tvyne

>PRINT @#7FFF -
I If the switch {5 onen, you should get |

Close the switch and type

>PRINT @#7FFF
) If the switch is closed, you should qet @

It the ahove didn’t hannen, double check your 1/0 circuit hefore
oroceeding,

The followina nrogram senses the position of the switch and makes the
jlqht behave accordinglys

- >|AA M=#7FFFtREM PUT THF NEVICE ADDRESS IN M

>11@ S=oMtRFM SAVE THE VALUE OF THE SWITCH IN S
. >| 3 @M=SetREM SEND THE VAILUE 0DF THE SWITCH TO THE LIGHT

>14A GO TO 11A*RFM RFPFAT, KFFP CHECKING SWITCH
This orogram could be shortensed to:t

>»50 a#TFFF=0#7FFF

>3 GO TO 5@
but it is not as clear that way. Going back to the first program, you
can see one of the advantaqges of software over hardware, [f you want
to change the sense of the switch, have It on when it used to be off
and vice versa, all you need to do is change Line 130 tot

>137 @M=NOT (S)
and the switch works the other way around, without chgnqina a sinale
wire. Now the liacht 1is ON when the switch 1s closed and OFF when the
switch is open., WKhile {t {s not hard to change a wire, if this were

part of a device committed to a printed circuit board, it might be

quite exoensive to esither mordify all the boards or have a new design
nut into nroduction. The software chanqge is often far simpler.

1-101

Sunpose you want the liaht to be OFF when the switch is closed and
hlink ON and OFF when the switch is ooen.

100 M=#7FFFsREM PUT THF DEVICE ADDRESS IN M

11 S=6MtREM SAVE THFE VALUE OF THE SWITCH IN S

132 -REM IF SWITCH OPEN, BLINK LIGHT ON AND OFF

149 eM=S:GOSUB 21AsREM LIGHT FOLLOWS SWITCH ON AND DO A TIME DFLAY
157 dM=?1GOSUB 2 1@ sREM TURN LIGHT OFF AND DO A TIME DELAY

160 GO TO (1)

20 REM TIMFE DELAY SUBROUTINE

21@ T=1AA1REM MAKF T BIGGER TO INCREASE DFLAY

220 DELAY T

230 HETURN

17,5 Exercises

Rewrite the above nrogram so that the light blinks when tihe switch is
closed and the light 1s OFF when the switch is ooen.

Write a nrooram so that the switch must be closed for several seconds
before the light comes ON, 1If the light is ON, ooening the switch
turns it OFF immediately. However, If the light is OFF and the switch
is closed, several seconds must elaose before the light comes ON., If
the switch is onened during this time, the light will not come on, or

even blink.

Answers are in Abpnendix A

1-102

e oaewee - AR s e o
g * — I — ———— e —— e, r i ———

Section 2

.‘..l/,

\ﬁ\a?v

|4
A

CHAPTER 1

1.1 Introduction

This reference quide is intended to provide you with information

on_the use of NSC Tiny BRASIC lanquaae, This section will also

provide you with information on NS5C Tiny BASIC commands, statements,
grammar, srror messages, and control characters, A hrief descrintion
of each is aiven along with a short examrle or two to denonstrate their
use,

This reference auide will nrovide a auick method of locating basic
information on NSC Tiny BASIC. For a more detailed descriotion, and
examnles of NSC Tiny BASIC’s use, Section | should bhe consuylted,

To learn how to use NSC Tiny BASIC, vou will need an INSRAT73 svstem
and a teletyne ar CRT terminal,

T e M mrm e e e e R s e S — — — b P A= ¢ e Bt o .

CHAPTER 2

2.1 Lanquage Exoressions

2.1.1 Variables

There are twenty-six variable names which can be used with NSC Tinv
BASIC. These are the letters of the Enalish lanouage alohahet, A
throuah Z. The values assianed to these variables are l6=bit signe-
integers. There are no fractions or floatina point numbers,

?.1.7 Constants
All numeric constants Aare decimal numbers excent when nreceded by a

opound sign (#), If preceded by #, the numher is interoreted as a
hexardecimal numbher., The symhols 55 wnuld be treaterd as a decimal

number, while #55 would be treated as a hevadecimal number (eoual tn
R5 in decimal value). Decima)l constants may be in the range of
=-32767 to 32767.
?.1.3 Relational Onerators
Pelational Onerators are the standard BASIC symbolst

= egual to

> qreater than

< less than

<= less than or eaqual to

>= greater than or eoual to

<> not equal to

The relational onerators return either a @ (FALSF) or =1 (TRUE)
as 8 result. NOTEt »>¢ 1is an illegal ooerator.

?.1.4 Arithmetic Ooerators

Standard arithmetic aperators are nrovided for the four basic arith-
metic functions,

+ add{tion
- subtraction

* s/ division

* multiolication

Arithmetic is accompiished by standard (6-bit twos-compliment ar{th-
metic., Fractional quotients are truncated, not roundeds therefore,
1673 will qgive 5, 17/3 will also give 5 as a result. Remainders re-
sulting from division are drooped. No attempt is made to round off

the nuotient. As usual, division by zero is not nermittedt {t will]
result in an error hreak,

The usual alaebraic rules for order in evaluating exoressions is
followed, The order of evaluation is controlled hy narentheses, and
their liberal use is advised. They provide clarity and awid confusion
in complicated exoressions,

2.1.5 Logical Operators

NSC Tiny BASIC provides Logical Operators AND, OR and NOT in addition
to the Aarithmetic onerators., These nerform bitwise looical onerations
on their 16—-bit arcuments and produce 16-bit results. The AND and OR
nnerators are cAalled binAary onerators because they nerform an oneration
on TAD arquments (or operands). An examnls follows with binary inter-

opretationt

>LIST

18 A =75 A= 0003 A0 108 (A1
20 B = Q9 B = 3000 AAA3 AlIF Al
32 C = A AND B C = 0000 AR08 2100 311
472 PRINT C

>RUN

617

2.1.6 Logical AND

>LIST

18 INPUT A

29 INPUT B

32 IF (A>S0) AND (B>58) THEN GO TO 68
4 PRINT WONF OR BOTH ARE SMaALL*

52 GO TO 18

604 PRINT wBOTH ARE RIGH

7% GO TO 1@

>RUN

7 51

? 52

BOTH ARE BIG

? 51

7?7 49

ONE OR BOTH ARE SMALL
7 49

7?7 49

ONE OR BOTH ARE SMALL
7C

STOP AT 12

>

2.1.7 Loaical OR

>LIST

i INPUT A

24 INPUT B

M IF (a>50) OR (B>5@) THEN GO TO 60
470 PRINT YBOTH ARF SMALL"

52 GO TO 1;

&f PAQINT #0ONE OR BOTH ARFE BIG"™

73 GO TO s

>RUN
? 51

?7 52

ONE OR ROTH ARE BRIG

7 51

7 49

ONE OR BOTH ARE BIG

? 49

? 49 -
BOTH ARE SMallL

°C

STOP AT 12

>

2.1.8 Logicel NOT

The third logical onerator (NOT) is a unary opsrator, It nerforms
an operation on only ONF aroument, as follows?

>L1ST |
>10 A = I A= 0050 POGN AABR 1@1) = ||

1"
>700 2 = NOT A
>33 PRINT R B= 1111 1111 1111 @100 = =12
>RUN 1%

-12
2.2 Functions

There area several functions that may be used in arithmetic exnressions
in NSC Tiny BASIC., These are described below,

2.2.1 MOD (a.,b) Function

Returns the mabsolute value of the remainder a/b, where a and b are
arbitrary expressions. If the value of b 15 2ero, an error bresk will

occur as Iin anv division oneration. Asx an_examolel

>10 A = 95 2
»2% R = 44 44/ 05
>3% PRINT MDD (A,R) _ 88
>gUN 7 wmeee=N0D (95,44)

2-7

2.2.2 RND (a,b) Function

Returns a pseuro-random integer in the range of a through b, inclusive,
For the function to perform correctly, a8, should be less than, b, and
b-a must be lass than or =squal to 32767 (base 1a), A typical examole
iss

>1® PRINT RND () ,i00)
>RUN
27

2.2.3 S5TAT Function

Returns the 8=bit value of the INSBA73 Status Realster., STAT may
apoear on both sides of an Assianment Statementi so, the orogrammer
can modify the Status Reaister as well as read it, The Carry and
OQverflow Flaas of the register are usually meaningless, since the
NSC Tiny BASIC interpreter itself is continually modifyinag these
flags., The Interrupt-Fnable Flag may be altered by an assignment to
S5TAT these flags. The Interrupt-Enable Flaa may he altered by an
assignment to STAT (such ast STAT = #FF). Location of individual
flaags are shown below:

Most Least
Significant Sianificant
Bit Bit
7 6 5 4 3 ? | @
CcY/L ov 58 SA F3 F2 Fl IE

Example of uses

>1?% LET A = STAT
>20 PRINT A
>RUN
176 —===wa==The decimal number, 175, translates to?
18113079 binary,

2.2.4 Status Reaglster Bit Functions
The function of each bit in the Status Reglster i1s described below?

BIT DESCRIPTION

7 CARRY/ZLINK (CY/L)® This bit is set to | i{f a carry occurs
from the most significant bit during an add, a comol iment-and-
add, or a decimal-ardd machine language instruction, This bit
may also be set by the operations performed by the SHIFT RIGHT
WITH LINK (SRL) and the ROTATF RIGHT WITH LINK (RRL) machine
language instructions., CY/L is {nout as a carry into the bit 9
nosition of the add, compliment-and-adi, and decimal-add machine
language instructions,

OVERFLOW (OV))t This bit is set {f an arithmetic overflow occurs
during an add (ADD, AD] or ADE) or compliment-and-add (CAD,

CAl or CAE) machine language instructions. Overflow is not
affected by decimal-add (DAD, DAI or DAE) wachine lanquage in-
structions,

NOTEt The ahove two bits may be of little or no use in an
NSC Tiny BASIC oroqram,

SENSE BIT B (S8)t This bit is tied to an external connector
pin and may be used to sense external conditions. This is

a Y"read-only® bitt therefore, it is not affected when the con-
tents of the accumulator are conjed into the status reqgister
by a STAT instruction, It is also the second interrunt inout
and may be examined by the ®ON* command.

SENSE BIT A (SA): This bit is also tied to an external connect-
or pin. It serves, as does SENSE BIT B, to sense external con-
ditions. In addition, it acts as the interrunt {nnut when the
INTERRUPT ENABLF (see bit 3 of status reaister) is set, This
bit is also a "read-only® bit, The same ®SON" command may bhe
used to sense this innut. This flag is used by NSC Tiny BASIC
as the serial input bit from the TTY or CRT.

USER FLAG 3 (F3)1» This bit can be set or reset as a control
function for external events or for software status, It is
avajlable ss an external outout from the INS8273.

USFR FLAG 2 (F2)t+ Same as F3, This flag {s used by NSC Tiny
BASIC to control the oaocer tape reader relay. .

USFR FLAG | (F1)s Same as F3, This flag is used by NSC Tiny
BASIC as the serial outout bit (with inverted data) to the

TTY or CRT.

NOTEs The flag 1, 2 and 3 outputs of the status register serve
as latched flags. They are set to the specified state
when the contents of the accumulator are copied into the
status reqgister., They remain in that state until the
contents of the status reaister are modified under oro~-
qrar control.

INTERRUPT ENABLFE FLAG {(IE)t The processor recoanizes the inter-
runt innuts 1f this flag is set. This bit can be set and reset
under program control. When set, NSC Tiny BASIC recoantzes ex-
ternal interruot requests received via the SENSE A or B inouts,
When reset, it {nhibits the INSAA73 from recognizing interrunt
requests.

2.2.% TOP Function

Returns the arddress of the first byte above the NSC Tiny BASIC nrogram
in the current page which is available to the user, This will be the
address of the highest byte in the NSC Tiny BASIC oroaram plus . All
the memory in the RAM above and including TOP can he used by the NSC
Tiny BASIC orogram as scratchpad storage. As an examplet

»128 PRINT TOP
>RUN
4407 ————eeddB? is the first address of unused RAM

2.2.6 INC (X) and DEC (X) Functions

These statements increment or decrement a memory location X.
Examplest

>1% LET X=1432
»20 INC (X)

>50 DEC (X}
>68 INC (6002)

>79 DEC (69 1)

These instructions are used for multinrocessing and are non=-interrunt-

able. This means that if two BA73’s are used on the same bus, wnen-—

ever one exacutes an INC (X) or DFC (X) instruction, other nrocessors

must remain idle. These instructions are used, generally, for commu- _
nications hetween nrocessors in a muyltinrocessor system, \

2.3 Statements
2.3.1 INPUT Statement

Data can be Input to an NSC Tiny BASIC orogram by using the INPUT
statement. One or more items (variables, exoressions etc.), separa-

ted by commas, may be entered according to the followinag formats:

18 INPUT A
29 INPUT P,C

When the statement at Line 10 is executed, NSC Tiny BASIC nromnts the
user with a question mark, The user types in a numher which is assiqgn-
ed to the variable A after the RETURN key 18 nressed., NSC Tiny BASIC
then nromnts the user with another question mark. The user tvoes in
two exnressions, senaraterd by commas, which will bhe as<signed to B and
C in that order.

RUN

? 45
?7 237, 4455

2-10

-NSC Tiny BASIC would now continue with execution of the arogram,
String innut is also allowed, See the String Handling section in this
chapter for more information,

NSC Tiny BASIC accepnts both numbers and exnressions typed in resoonse
to an INPUT request. For examplet

>Im A={D

»200 INPUT R,
>33 PRINT BR,C
>RUN
TA+] A%?

It 2¢

The comma between the entered exnressions is not mandatory and can be
renlaced by spaces if the second exoression does not start with a nlus
or minus sian.

There muct be at least as many exnressions in the innut list as vari-
ables in the INPUT statement, If an error occurs when N5C Tiny BASIC
tries toc evaluate the tynerd=in exnrecgion, the message?

RETYPE

is printed along with the error message, and the aquestion mark (?7) .

orompt will apoear aoain so that the user can type the evnressions
correctly.

The correct response to an “INPUT sfactor”’ statement is a string,
‘terminated by a carriage return., Quotation marks are not used for
input.

INPUT may not be used in the command mode.
2.3.2 PRINT Statement (Output)

The PRINT Statement {s used to output information from the orogram,
Quoted strings are displayed exactly as they anpear with the quotes
removed. Numbers are orinted {n decimal format. Positive numbers will
be orecerded by a snace, and negative mumbers will be preceded by a
minus (~) sign. There is & trailing space for all numbers, A semi-
colon (&) at the end of a PRINT Statement sunoresses the usual carriage’
return and line feed with which NSC Tiny BASIC terminates the onutout.

Strings stored in memory (such as those aenerated by & String Inout
Statement) may alsn be nrinted, Refer to the String Hand]ling Section
in this chapter for more information., Tynical example:

SPRINT =THIS 15 A STRING*
>20 A=IP

>30 B=2Q

>4 PRINT 1@ PLUS 2a=#_, A+B
>RUN

THIS IS A STRING

16 PLUS 20=30

2-1n

2.3.3. LET Statement (Assignment)

The word, LFT, may be used or omitted in an Assignment Statement,
The execution of an assianment statement is faster if the word LET is
used., The left portion of an Assignment Statement may be a simnle
variable (A=Z), STAT or a memory location {ndicated by an @& follnwed
by a variable, number or an expression in parentheses, (refer tn

Infirect Orerator for more information). Fxamnrles:

LET X=7

X=7

LET E=I#R
E=[*xR
STAT=#70
LET oA=255
@(T+36)=#FF

Conditional assignments may be made without using an IF statement,
The method hinges on the fact that all oredicates are actually evaluy-
ated to yleld =1 {if true, and & {f false, Thus, if a nredicate is
enclosed in parentheses, it may be used as a multinlier {n A statement

ast

LET X= =A*(A>=Q)+AX{A<O)
which would assiaon the absolute value of A to X,
2.3.4 The GO TO Statement

NSC Tiny BASIC allows GO TO Statements to allow nrogram branches to a
speclfic line number or a line number called by an arbitrary ex-
nression. As examplest

1@ GO TO 5@
would cause the nroaram to fumn from Line 10 directly to Line 57, but
18 GO TO X+5

would cause the groaram to jumo from Line 18 to Line X+5, Thus, the
value of X is variable allowing dynamic control of program exscution
at this DOlnt.

2.3.5 GOSUB/RETURN Statements

These instructions are useful when a computation or operation must be
performead at more than one nlace in a nroaram. Rather than write the
routine at each olace where needed, a GOSUB instruction {s used to

4call* the computation or opneration (referred to as a SUBRRIUTINF) .,
After the subroutine has bheaen executed, a RFTURN {nstruction (the last

instruction of the subroutine) causes the nrogram to resume execution
at the next line numher following the oriainal GOSUR {nstruction. As
an example:

2-12

o

MAIN PROGRAM

12 LET X=5
20 B=X+8
o . SUBROUT INE

53 GOSUR 20— 263 Y=X+B/A
60 X=A/B N

183 GOSUB 208° ____._—>258 RETURN
119 X=XwB "~

On the first GOSUB call, the order of execution follows the solid
arrows. At the second GOSUB call (Line 1), the order of execution
follows the dashed arrows.

NOTEs GOSUBs may be nested up to B levels deep (including interruot
levels),

2e3.6 1F/THEN Statement

This instruction allows for program control to be modified by a loqgical
test condition. The test condition follows the IF clause of the state-
ment, When the test condftion is true (non-zero), the THFN portion of
the statement will be executec, When the test condition is false
(zero), the THFEN portion i{s ilgnored and execution continues at the next
numbered line of the orogram,

53 IF X>J THEN GO TO 140 |
NSC Tiny BASIC allows the omission of the word THEN from an [F/THEN

Statement. This omission, also allowed on some larger BASICs, enhances
the clarity of the nrogram, The above statements then becomes

53 IF X>J GO TO 140
2.3.7 DO/UNTIL Statements
This instruction is not avajilable in standard BASICs. This statement is
used to program loops, keening GO TO statements to a minimum. The
overall effect is to greatly improve readability and clarity of NSC

Tiny BASIC programs. The following examnle shows the use of DO/UNTIL
Statements to print numbers less than 1001«

2-13

td PRINT 1t PRINT

200 PRINT 2

3% I=3 tREM I IS NUMBER TESTED
490 DO

5 J=1/2 sREM J IS THE LIMIT

60 N=| tREM N IS THE FACTOR

70 DO tREM SEEKS A DIVISIBLE FACTOR OF I
8@ N=N+2

o% UNTIL (MOD(I N)=A OR (N>J))

122 IF N»J PRINT I 3REM NO DIVISIBLE FACTOR
Ha I=1+2

1200 UNTIL ¢(I>198) *REM ENDS THE SEARCH

Ry enclosing a zero or more statements bestween the DO and the UNTIL
<condition> statement (where the <condition> i{s any arbitrary ev-
oressjion), the statements between will be receated as s groun until
the <condition> evaluates to a non-zero numher (a true condition}, DO/
UNTIL loops can be nested, and NSC Tiny BASIC will reoort an error if
the nesting level becomes too deen, (more than eight levels).

2.3.8 FOR/NEXT Statements

These statements are identical to the FOR/NEXT Statements iIn standard
BASICs, The STEP in the FOR statement is ontional, If it {s not in-
¢luded, a STEP value of +1 is assumed, The value of the STFP may be
either positive or neaative, Starting and ending values of the FOR/
NEXT looo are included in the FOR statement. The loop is repeated
when the NEXT statement has been executed nrovided the uvoper limit of
the FOR statement has not been reached, When the upper limit is
reached, the nroqram will exist from the FOR/NEXT loop. NSC Tinvy
BASIC causes an error break Iif the variable in the NEXT statement is
not the same variable as that used in the FOR statement.

FOR/NFXT loons may be nested, and NSC Tiny BASIC will renart an error
if the nesting level hecomes too deept a deoth of four levels of FOR
loop nesting 1s allowerd., A FOR loon will be executed at least once,
even if the initial value of the control variable already exceeds its
hounis before startina. The following nrogram would do nothing but
orint the odd integers less than 10,

10 N=19%0 . SREM UPPER LIMIT
2% FOR I=] TO N STEP 2 sRFM START AT t WITH STFP OF 2
3 PRANT 1 tREM PRINT A NUMBER

- 4@ NEXT 1 t1REM REPFAT (at Line 20)

2.3.9 LINK Statement

Control may be transferred from an NSC Tiny BASIC orogram to an INS
BA73 machine language routine by means of a LINK Statement. This
allows the user to make use of routines which may be more efficiently
performed in machine language, A statement of the form LINK <acddress>
will cause control to he transferred to the INSRAT3 machine lamguage
routine starting at <address>, Control {s transferred by execution of
a JSR instruction., The nointers may be modified by the routine. P3’s
value is unoredictable, and P2 points at the start of A-Z variable
storage, Variables are stored in alphabetically ascending order, two
bytes each, low order hyte first then high-order byte.

2-14

Examples

>1?% LINK #1803 NSC Tiny BASIC transfers to
»209 IF A= THEN PR #SENSE A IS LOW» aridress #I1BM3 to read
>3 IF A=1 THEN PR ™SENSE A IS HIGH“ Sensor,

»99 STOP Program transfers back to
>RUN NSC Tiny RASIC

SENSE A 1S HIGH

STOP AT o9

>RUN

SENSE A 1S LOW

STaP AT 99

| +.TITLE SENSE

2 Ao +=0 | R0 SHEXADECI MAL

3 1803 96 LD AS

4 1801 D4le AND A,=16

5 1823 6CO2 BZ LOW

6 1885 C4@1 LD A=l

7 1887 CAPQ ST A,B,P2 $STORES ACCUMULATOR INTO LOCATION
8 1809 5C RET OF VARIABLE A

9o oMM LEND

7.3.10 ON Statement

This statement is used for processing interrupts. The format of the
statement ist

ON interrupt-#1, line-number

‘Nhen numbered interrunt (interruot-#) occurs, NSC Tiny BASIC executes
a8 GOSUB statement beginning at line number ®*]ine-number®, I[f ®line~
number#® {s zero, the corresponding interrupt is disabled at the soft-
ware level. Interrupt numbers muz be | or 2. Use of the ON statement
disables console interrupts (BREAK function). Interruots must also be
enabled at the hardware level by setting the Interrunt Enable bit in
the status register (for examnle, using STAT={},

2.3.11 STOP Statement

Although the last line of a nrogram does not nead to ha a STOP state-
ment, it is a useful debugging tool for programs., The STOP statement
may be inserted as hreakpoints in an NSC Tiny BASIC program.

When NSC Tiny BASIC encounters a STOP statement, it orints a stoo
message and the current line number. It then returns to the edit mode.
Thus, the programmer can see whether his program reached the desired
point. Any number of STOP statements may annear in the progqrvam, B8y
removing the STOP statements, one by one, a brogram can be tested by
narts until the debuagina orocess {s completed.

2-1§

Execution of a stooned program may be continuad after the STOP by a
CONT (continue) command.

2.3.12 DELAY Statement

This statement delays NSC Tiny BASIC for ®expr® time units (nominally
milliseconds, 1-1343), Delay @ gives the maximum delay of 1040 milli-
seconds., The format iss

DELAY exor
Examplet
>10 DELAY 100 Delay 19 milliseconds.
2.3.13 CLEAR Statement
This statement initializes all variables to @, disables interruns, en-

Ables BREAK capability from the console, and resets all stacks (GOSUB,
FOR~-NEXT, DO-UNTIL).

Cxample:s
5|14 ON 2,257 Break 1s disabled, Interrupt 2 is enabled.
>309 CLEAR Break i{s re—-enabled, Interrunt 2 is disabled.

2.4 Indirect Operator

The Indirect Operator is an NSC Tiny BASIC exclusive, at least in the
realm of BASIC. It accomplishes the functions of PFEK and POKF with a
less cumbersome syntax, The Indirect Overator is a way to access abso-
lute memory location althouah {ts anolications are not limited to that.
Its utility is especially significant for microprocessors, such as the
INSRA73, where interfacing i1s commonly nerformed through memory ad-

dressing.

An "at® sign (@) which nreceeds a constant, a variable or an exnression
in parentheses causes that constant, variable or exoression to be used
as an unsigned 16-bit address at which the value i{s to be obtained or
stored. Thus, I{f an innut device has an address of #6800 (hexadecimal),

the statement:s

LET X=8#6800
would input from that device and assign the value of the i{nnut to the
variable X, If the address of an output device was #6RF1, the state-
mentt

680 =Y

would outout the least significant byte of Y to the device.

2-18

The indirect operator accessing memory locations only one byte at a
time. An assignment such as @A=248 chanoes the memory location point-—
ad to by A to 248 (1111 18a3) binary, since 248 can be exnresced as one
byte. However, an assionment such as 8A=?58 changes the memnrvy location
pointed to by A to 2 because the value of 25R cannot be exoressed by a
single byte, as shown belowt

259 = | A0 21O

[
extra bit one byte (stored into location to which A would noint)

Only the least siagnificant byte of 258 (which is ?2) 1s stored at that
location. The extra bit wotild be lost forever.

Any place that A variable, such as B, would he leqgal, the construct
"@B*® would also be leqgal. The meaning of 8 ist the bvyte located at
the memory location whose adiress is the value of B, Other examples:t

472 LFT B=6200 Assigns 6008 to BR.

51 LET @ B=|@9 Stores decimal 18 in memory location 5A97.

6% LET C=@B Sets C=to 19,

78 PRINT 86702 Prints 199,

8% LET D=@(A+1A+D) ?etfﬂnafhe value stored in memory location
A+10»D) .,

Parenthesas are required when annlving & to an exoression.

2.5 Multinle Statements On A Line

More than one statement can be placed on one program line, This is:
accompl ished by placing a colon between the statements, Readability
of the program can be improved, and memory snace can be saved by using
‘this technique. A5 an example of the use of multiple statements:

223 PRINT ®MY GUESS IS® ,YsPRINT #INPUT A POSITIVFE NUMBER™::
INPUT XsIF X <=3 GO TO 200

If X fs neaative or zero, the user will be instructed to enter a
nositive number, and the ornaram returns to Line 28@ for a new quess,
If the user had entered a positive number correctly, the oroqram
would have oroceeded to the next numbered]line after Line 2004,

Care in use of multiple statements oer line must be exercised. The
.above example shows that if the condition of the IF STATEMENT {s false,
control is passed to the next oroqram line. Anything else on the line
containing multionle statements will be {anored,

2-17

2.6 String Handling

String inout may be accomplished by executing a statement of the form
INPUT 8 F, where F is a Factor syntactically (see Grammar). When the
orogram reaches this statement during program execution, NSC Tiny BASIC
nrompts the user with a ouestion mark (2). All line editing characters
may be used (back space, line delete, etc.). I[If a control-U is tvoed
to delete an entered line, NSC Tiny BASIC will continue to promnt for a
line until a line is terminated by a carriage return. The line is
stored in conseciuitive locations starting at the address oointed to by
F, un to and inclurding the carriage return. Fxamplet

20 INPUT $ A may also be written 20 INPUT SA

and inputs a string to successive memory locations starting
at A.

2.6.,) String Outout

An ftem in a PRINT statement can include a string variable in tne form
of $8, where B §{s a factor, When the print statement is entountered
durina nrogram evecution, the string will be nrinted beainning at the
address B up to, but not including, a carriage return, A keyboard
fnterrunt will also terminate the nrintinc of the string if detected
before the carriage return. FExample:

5@ PRINT sB nrints the string beainning at the location
pointed to by WRW%,

2.6.2 String Assignment

String variahbles can be asgsigned to characters In quotes just as other
variables are assigned numerical values, A statement of the form $C=
WTHIS STRING IS A STRINGY (when encountered during nroaram execution)
would cause the characters in quotes to be stored in memory starting at
the address indicated by C uo to and including the carriage return,
Examoles

7 sD="THIS 1S A STRING WITH NO INPUT STATEMENT.®
A "T% is stored at location "D*, andi H at location *D+i" etc.

2.6.3 S5tring Move

Strinas can be moved from one memorv block to another memory block using
this feature. A statement of the form $A=SB (where A and R are Factors)
will] transfer the characters in memory beainning with the address R to
the memory beginning with address A. The last character, normallv a
carriage return, is also conied. Also. a statement such a&s S(A+))=S4A
woulrd he disasterous since it causaes the entire contents of the RAM to
be filled with the first character of SA,

2-18

2.6.4 5trina Examples

19

20
X
49
57
60
T
8

A=TOP

C=TOP+1 00
D=TOP #2002
INPUT $A
PRINT sa

SREM A POINTS TO EMPTY RAM ABOVE TOP OF
PROGRAM

SREM C POINTS TO RAM 1#@ BYTFS ABOVE A

tREM D POINTS TO RAM 109 BYTES ABROVE C
*REM STORES CHARACTFRS WHERE A POINTS

LET $C= "|S THE STRING INPUT AT LINF 1@¥

$D=sC
PRINT sD

2.7 Commands

2.7.1 NEW

expr

tREM STORES CHARACTERS WHERE D POINTS

This command establishes a new start-of-program address equal to the

value of %expr¥,

NSC Tiny BASIC then executes its initialization

seaguence which clears all variables, resets all hardware/software
stacks, disables interrupts, enables BRFAK capability from the console,
and performs the nondestructive RAM search described in nart one., If
the value of Yexpr® points to a ROM address, the NSC Tiny BASIC brngram
which begins at this address will be automatically executed, Proqgram
memory (includina the end-of-proaram nointer used by the editor) is not
altered by this command,

Examnlet

SNEW | 07

NEN used without an argument sets the end-of=-program oointer equal'to
_the start-of-proaram pointer so that a new proqgram may be entered, If
“a program already exists at the start-of-orogram address, it will bhe

" lost,

Example:?

NFEW |90
NEN

2.7.2 RUN

Sets program nointer to 1000
Sets end-of-program oointer to IiMa

Runs the current program,

Examples

>RUN

Execution begins at lowest line aumber

2-19

2.7.3 CONT

Continues execution of the current program from the point where
execution was suspended (via a STOP, console interruot, or reset),.
An NSC Tiny BASIC program that is executing can be interrupted by
pressing the BREAK or RESET keys on the kevboard., Execution can
be resumed by entering the CONT command,

Examples

>RUN

THIS IS THE STRING INPUT AT LINFE 1@

THIS IS THE STRING INPUT AT LINE 19

THIS IS THE STRING INPUT AT LINE 12

THIS IS THE STRING INPUT AT LINE 1# Press BRFAK or RESET.
~C

>CONT

THIS IS THF STRING INPUT AT LINF 1@

THIS 1S THE STRING INPUT AT LINF 1

And sO on,.,..

2.7.4 LIST (exor)

Lists the current proaram (ootionally starfing at the line number
specified by (exor)).

Examples
>LIST 18
1% INPUT sA

20 PRINT $A
30 LET s$C=»15S THE STRING INPUT AT LINE ig»

4@ s$D=sC
5a PRINT sD

2-20

A

\"

Section 3

CHAPTER 1
1.t Introduction

The desian of an INSBA73-based system {s quite stralohtforward, Figures
1=1 through 1=3 i{llustrate this point. Fiaqure |-l shows A minimum size
RAM-based system$ this is the kind of system used in enaineering labs
for software development, For stand-alone nrogram oneration a system
like the one shown in Figqure (-2 can be used, provided 265 bytes nof RA#
are available for variable storage. Flagure 1-3 is an exnansion of this
system to allow a 32-bit parallel 170 interface.

ADDRFSS

oUT —»|BUFFER ADDRESS
RS-232 _:\-s SA/ZINTA

TERMINAL DATA [QEPlDATA
_»
B

NRNS READ
IN 44— BUFFER NWDS | WRITE
EXTERNAL
INS8A73 PROGRAM RAM
(Includes the
ouT —P| BUFFFER 256 bytes used
hy NSC Tiny RASIC)
TTY IN M—BUFFER C—LFI SB/INTB[d4——
~USER I/0
F3d4—
RDR
RELAY 44— BU FFER & Fi

NOTEt It is net necessary to have a TTY and an RS-232 terminal.
Either one may bhe omitted.

Figure 1-1, Minimum RAM=Based System

PROGRAM

INSR73 ROM/FEPROM
—®|SA/INTA AINRESS ANDRFE SS
—»|SB/INTR DATA DATA
Jsvie 170 e—Fi NRDS —| ENARLF
<+—{F>
FAM
(256 RYTES
3 MINTMUM)
ADDRESS
NATA
| RFAD
NADS »|WRITE

Fiture 1=2, Minimum ROM/FPROYM~Rased System

MM2716

DA-D7

AD=AlD
CcS

OE

INSR154

AD=AG
M/TO
CSo
CS1

Da-D7

NRDS
NWDS

PAA-PAT

PRA-PRT

INS8154

32 1/0
LINES

INSB@®73

—btumn DA-D7

—P|SB/INTB AG=A1S

4—F! NRDS

4—F2

4—iF3

NWDS
Figure -3,

AD=AG
M/10
CS@

CS1
ba-07
NRDS

NWDS

PAR=PAT

PBA-PB7

¢

¢

1/0 Expansion of the Minimum ROM-Based System

1.2 An N5C Tiny BASIC Examnle System, Functional Snecification

It is ohvi
number of
developed,

ous, from the nrecading examoles, that by using only a small
ICs, an extremely powerful and flexible system can be easily
To illustrate this point, we will design a system tn

satisfy all of the followinag reguirementss

2

8.
9.

To allow the user to enter, debug and execute HAM-baserd NSC
Tinv BASIC proarams un to 1372 lines in lenath.

To interface to a terminal or TTY for orogram entry and
debua. Multiple data rates (liG3, 380, |129¢% and 48040 Raud)

should be sunoorted.

To allow the user to transfer RAM resident orograms into
EPROM,

To allow an FPROM nrogram to be run in a real-time control
apolicaticons where a terminal is not present.

To have ample [/0 canability flexible enough to interface to
most user systems, ‘

To orovide the user with "scratchpad® RAM for use when assem-
bly lanquage subroutines are invoked via the YLINK"™ statement

To suonort at least two interruots.

To fit the entire system on a sinale &% x 7% PC card,

To satisfy all desian requirements using a minimum number of
[IC’s., Fxecansion of the minimum system should be accomolished

by simnie addition of "ontional® RAM, FPROM and [/0 devices
on the PC card.

Al though meeting all of the ahove requirements may at first seem diffi-
cult, these objectives are easily attainable, as the following para-

qgrarhs will show,

3-8

M
.
-

ey e T I

L1

3323

-2
' p
.1‘.. - a k.

" e LUk] - L L] TN g LIy
ey IvPhoany WPy [] Prindady (et i)
seawacs o $idd te b w - o il

-

e B B v I P S S

|t d
Ejos
Y4

]
,|;l!.
4
P
o5
e
S§r
[}
L]
¥
an
B4
‘ ol
“t
-
L]

n-ks)
L]
»i|
L
"
-, 4
- -
= 15
:) =D
b £1]] Systgxal n ¥ BA tixaniim § ¥ pitvEney sa¥ian
-. MATI ferTusas) e v sufls {evtwun) wg e VIS4 ArRmin) we
i I’} 124 RREE & | EF7T . i it
i ¥ 19 shrntaeh 1
- } 3 F“I FY
2 nna Sl
N N np
g 1 w
h.] a
ey "
m
" -
g
rave HUDM MA {4 (e, ML SRR g d S ORGar AN ComiTIN died dd RPN tel & W -
; Dot e 8 (puh, W PEEd A o Y, et § o MK LALTID s S CIDFISRADIAP il & W
. Nintard g Fotphin [P0 M), 68 (% i | Ty (T), ML STedl TuEL oW W) My -
Ao Fmawig aevih:
Tah RELETIN AN B W, ke

v CAIACToM ARS YV, & T
L e e e N L LI LA LN X P T e

7
.

Vs

1.3 Hardware Design of a Small INS8A73-Based System

A system that meets all of the above design requirements is shown in

Fiqure -4,

follows:s
IC TYPE
INSBAT73
MM2114

7415368

74L502

1C DESIGNATNR

ul

uz2, U3

U44

U4B

vac

U4D

U4E, U4F

UsA

uss

usc

usbh

The tyne, designation and function of each I shown is asg

FUNCTION

NSC Tiny BASIC processor.

1J2 and U3 provide IK bytes of
static RAM, (Fach MM2t14 nro-
vides 1Kx4 bits,)

Inverter for TTY inout inter-—
face,

Inverter for TTY reader relay
interface,

Inverter for RAM address manning
IOQic .

Inverter for power-on reset of
INSB 255A .

TRI=-STATE inverters for selection
of multinle Baud rates.

Two inpbut NOR gate. Used for
address mapning of the EPROM
programmer.

Two input NOR gate. Used to .
select interrupt source(s}) to
INSR@A73,

Two input NOR gate. Used in Rau-d
rate selection logic,

Two inout NOR gate. Used for
address mapping of the INS8154,

LM747 Uéa
Usen
7415123 Uu7a
U7B
74507 usa,B,C
usp
74LS 139 ue
T MM2114 uie-uis
MM2716 uté,ui7
INSB255A uis

The LM747 is a dual OP amo. UG6GA
buffers the nositive/negative
vol tage levels received from the
RS=232 comnatible innut to the
TIL levels required by the
INSRA73.

U68 buffers the TIL levels gen-
erated by the INS8273 to the pos-
itive/neqgative voltage levels re-
quired to drive the RS5-232 com-
patible output.

The 74LS123 is a dual One-shot.
U7A provirdes adequate address/
data setup time to program the
MM2716 FPROM.

U78 provides the 5@ msec oro-
aramming npulse required tn write
data into the MM27!6 EPROM.

UB is a guad NAND gate, UBA, URR
and UBC are used in the Baud rate
selection loglce.

Used in the RAM address maoping
logic.

Dual 2 line to 4 line decoder

with active low outnuts. Pro-
vides address mapping for RAM,
EPROM and 1/0 ICs.

Provide an additional 3K bvtes
of cotional RAM proqram memory.

Provide un to 4K bytes of opntion-
al EPROM program memory. (Each
MM2716 contains 2K bytes.)

Optional Programmable Perioheral
Interface chin. Provides 24 [/0
lines that may be used to inter-
face with the user’s system., 1/0
oins may be programmed as inouts,
outnuts or bidirectional, in-
cluding the required handshake
signals, (Refer to the INS8255A
Data Sheet for additional infor-
mation,)

3-10

’
r
ul"'#

INSBI154

uie

Ontional 178 hyte wAM=-{/0 chinp,
Provides |28 bytes aof scratch-
pad RAM for use in assemhly
language subroutines, Also nro-
vides 16 1/0 lines that may be
individually nrogrammed as in-
put or output, Iincluding strobe
mocde with handshake, (Refer to
INSB154 Data Sheet for addition-
al information,)

Note from the above tabulation that the minimum system consists of only
nine IC’s Ul - U9, Together they orovide 1K bytes of RAM program mem-
ory, an RS=232/TTY interface, an MM2716 FPROM programmer, automatic
Raud rate selection and complete decodinag for the fully expanded
system. The fully exnanded system consists of 19 IC’s,

Figure =5

Photo of NSC Tiny BASIC Card

3-11

1.4 Addressing Requirements/Caoabilities of Fach System Comoonent

Each of the system components shown in Fiaure |~4 must be assigned
to address locations in memory., The built-in address decoding capo-
ability of each system component can be summarized as followss

4K Bytes of RAM

Fach of the four nairs of MM2114 chips fully decodes 1@ bits and
can be selected via one active low select per pair.

4K Bytes of EPROM

Each of the two MM2716 EPROMSs fully decodes Il bits and provides
two active low select lines over device for reading of data,

INS8255

The IN58255 contains three [/0 ports and one control word register,
all of which are decnded on chio via two address {nout lines. The
device is enabled via a sinale active low select line.

INS8154

The [INSBI154 contains 128 bytes of RAM, two [/0 ports and two data

+direction reqisters, all of which are decoded on chip via eight
adrdress lines. The device is enabled via one active hiagh select
line and one active low select line,

Baud Rate Selectlon Loglic

The INSB®73 selects the Baud rate by reading the contents of memory

- location X/FDA@d, To program the Baud rate, this location must be
decoded via external loqgic, and the ambrooriate logle levels supnlied
on data lines I, 2 and 7, (Refer to RS5-232/Current Loop Interface
section for additional details,)

FPROM Programmer

To nroaram an MM2716 EPROM, address/data are sunplied by the INSBRA73
to the 2716 socket U116 {n Figure 1.4, When VPP = +25V and address/
data are valid, a single byte may be written by providing a 51 msec
nprogramming oulse to pin 18 while the chio is deselected via a logic
1 on nin 28. A byte which has been written may be subsequently reard
by simply supolying the correct address and oroviding a loalc & on
nin 28. (Refer to MM2716 Data Sheet for additional details.)

3-12

'f'-m

‘\“.'

1.5 Memory Mapping Constraints For All System Components

The components described above can be mapped into memory in a variety
of ways. The system constralnts imnosed upon this manoina are the
s~ following:

l«. The decodlria hardware will be implemented using a minimum number
of ICs,” This implies that the system components will be only
partially decoded, resulting in multiole Iimages of each com-
ponent 1n memory.

2, Althouah multiple memory images of each system comoonent may be
nresent, the manoing hardware will be desioned such that it is
imoossible to enable more than one system comnonent at a time.
This restriction eliminates the possibility of causing data bus
conflict As the result of a programmina error., (A data bus L£on-
flict could cause transmission/receiot of invalid data and chio
damaqge.)

3. NSC Tiny BASIC program RAM will be decoded as a contiauous blonck
c0o that the INS8M73 can successfully {dentify the beainning and
the end of the nrogram RAM that 1s actually nresent.

4, The RAM and the [I/0 norts of the INSRIS4 will he located in the
address range X’FFW - X*FPBF, This aillows INSBRA73 assembly
lanquaqge sihroutines to address the INSRIS54 using the DIRFCT
addressing mode, (Use of DIRECT addressinag eliminates the need
to dedicate or multiplex a pointer in order to address the
INSB8I54, For additional details on NDIRECT addressing, refer to

the INSBOT® Data Sheet.)

5. Hhen on=card FPROM 1s oresent, It will be located startina at
address X/8man3A, This allows the system to be used in real-time
control! anmplications where a terminal is not nresent.

‘K1ll of the above constraints are satisfied by the memorvy assignment
shown in Filgure 1-5 and Fiqure (-6. Figure 1-5 shows how the 64K
addressing space of the INSBA73 is to be partitioned. Figure 1-6
shows the address bits (in boldface) that are actually decoded by the
hardware shown in Figure 1-5, resulting in muitiple (but not over-
lapping) memorvy images of each component. The locations of these mul-
ticle images are also shown, with address bits Al12 - AlS specifyving
one of 16 possible memory "nages", each of which contains 4K bytes.

1.6 System Generated Interrupts

NSC Tiny BASIC supports interruots via the "ON¥ statement. As shown
in Fiqure 1-5, interrupts generated by the INS8154 and/or INSR255 may
he connected, at the user’s discretion, to the SB/INTB pin of the

INSBA73., When this is done the INSBA73 SB/INTB pin may be used to

detect Interrupts under control of the user’s program, If Interruots
are disabled, the SR/INTB pin may be employed as a sense pin that can
be examined via the NSC Tiny BASIC ®STAT® Function or the WON" State-

ment .

HEX ADDRESS MEMORY CONTENTS HEX ADDRESS MEMORY CONTENTS
PNOB-B9 FF INS8AT3 ON-CHIP 84AR-87 FF ROM @ (2K BYTES)
NSC TINY BASIC
INTERPRETER
. . 8807 ~8 FFF ROM 1 (2K BYTES)
1 AGA-1 3FF RAM @ (1K BYTES) | fbe—eciee- : P
---------------------------------- F700-F703 INSB255A
140@—1 7FF RAM 1 ¢1K BYTFS) — _— ———
| 8A3-18 FF RAM 2 (1K BYTES)) .
1COB-) FFF RAM 3 (1K BYTES) | |=cmmmmmmeeee --]
--------------- — FDa2 BAUD RATE SELECT
200027 FF MM2716 EPROM OO A, -
PROGRAMMER . .
L. . FEAR-FFTF INSB154 RAM
I (128 BYTES)
FESA—FFA4 INSB154 1/0
PORTS/CONTROL
FFC@~FFFF INSB@73 ON-CHIP

RAM (64 BYTES)

Figure 1=-6 Partitioning of the INSBA73 64K Addressing Space

3-14

EPROM PROGRAMMER
(X?2000=-%X*27FF)

RAM @ (X7] 000~
X?1 3FF)

RAM)} (X21400-
X?17FF)

RAM 2 (X/1827-
X’1 XFF)

RMM 3 (X~ 1Coa-
X1 FFE)

ROM # (X/8BA0A-
X*87FF)

ROM | (X~88%7—
XBFFF)

INS8255A (X/FT00—
X’F7a3)

BAUD RATF SELECT
(X/FDAA)

INSR154 RAM
(X? FFO@-X~FFTF)

INS8154 /0 PORTS
(X’ FFRA-Y7 FFA4)

ADDRESS B;TS
15 14 13 12 11 10 9_ 8 7 6 4
0_-; X-]) g X ; X X X X
@ X X | 2 A2 X X X X X
2 X X 1 @ 1 X X | X X X
72X X 1 1 2 X X [X X X
a x x |1 r X X [x X X
i X X @ A X X X X X X
! -X X a I X X X X X X
rx X 1 P X X X X X X
1 X X 1 1 X @& X | X X X
I X X 1 I X 1 X X X X
X X 1 1 X 1 X I X X
NOTES! #X® refers to an address bit that may be zero or one.

1.
2,

Rits that are actually decoded by the hardware shown in
Figure 1-4 annear in boldface tyne.

Table 1-t,

3-15

Address Bits

Decoding only the indicated address bits results in the following
multiple memory images of each component. This list is organized in
three columns, The first column shows the component, the second shows
the page in memory into which that component {s mapped, (page numbers
ranae from 2 to F, each nage being 4X bytes)s and the third shaows how
the elements of a;shared nage are subdivided.

COMPONENT PAGES ADDI TIONAL
CONDITIONS

EMPROM PROGRAMMER A, 2, 4, 6

4K RAM I, 3, 5, 7

4K ROM 8., A, C, F

INSH255A 9.8, D, F All = 0

BAUD RATE SFLECT 9, B, D, F AlL =1, &9 =0

INSB154 . 9, B, D, F AL = 1, A9 = |

Figure 1-6 Address Ait Decoding for the System
1.7 RS=232/Current Loop Interface

The described Baud rate is automatically selected when the INS8373 is
iritialized, or when a “"NEW* command is {ssued, Initialization is
automatically accomolished at VCC nower-on by Rl and Ci in Fiqure 1-5,
(Pressing switch 51 also causes the INS8273 to be initialized.) The
Raud rate is jumner selectable as follows:

BAUD F16-F17 E18-F19

RATE JUMPER JUMPER D7 D2 D1
e PRESENT PRESENT | | i
309 PRESENT ABSENT 1 1 7]
1200 ABSENT PRESENT 1 a I

4800 ABSENT ABSENT 1 % a

If only the 11@ Baud rate is required, nullup resistors on data lines
DI, D2 and D7 reonresent the only external hardware required to select
this rate.

As shown in Figure 1.5, the INSB273 Fl| flag is double huffered to oro-
vide an RS5-232 comnatible voltage outnut and a 2@ma current outout.
Positive and negative RS-232 levels are generated by the LM 747 on
amn, The 272 ma current drive iIs produced by transistor switch QI and
Resistor RI15.)

The [N58@73'92 flag is used to enable/disable the TTY reader relay via
transitor switch Q2 and current limiting reqgister R2. These components
will suoply 29 ma of current to a 12V (66@) relay,

The INS8@&73 will accent serial ASCII input data in its SA/INTA innut.
As shown in Figure 1.5, the RS5-232 inout, signal is selected via a
jumper between E5-E6, or the TIY innut signal may be selected via a
fumper between E6-E7.

3-16

~»

CHAPTER 2

2.1 MM27t6 FEPROM Programming Sof tware

An NSC Tiny BASICwutility program that programs MM2716 EPROMs, and one
that will work with the system shown in Figure 1-4 is shown in Apoendix
D.e A PROM with this nrogram must be pluaged into socket U117 to onerate
these utility programs. The programmina software is called from NS©
Tiny BASIC by typings .

>NEW #BRAD

This oroagram decodes and executes the following ten commandst

COPY
PROGRAM
VERIFY
FRASE CHECK
FILL

DUMP

LOAD

ASCI1 LOAD
WRITE

READ

Each cormmand is designated by a single command letter followed by -3
address and/or data fields, The user is orompted for a command input
by the message NCOM?¥, In resnonse to this, a8 legal command {n the
oroper format must be entered, If an illegal command letter or im-
nroner format are employed, the user will be prompted to re-enter an—
other command by-the messaget "INPUT ERROR: TRY AGAIN.® Addresses
and data should be entered in hexadecimal, without the preceding "##
sign. Address and data fields should he delimited bv slashes (/) or
by commas (,)., Snaces are ontional and are ignored. For convenience,
Ydefault” addresses and/or data are associated with each command.
These defaultvalues allow the user to enter only the command letter,
followed by a carriaoe return. When this is done the default values are
substituted for the address/data that was not entered, The default
values are oreset to the mnst commonly used address/data for each
command, When the default values are unsuitable, the desired address/
rAata must be entered,

The commands are:discussed i{n detail in the following paraaraphs.

2.2 COPY Command
FORMAT® C source-starting/source-ending/destination=-starting
EXAMPLE: C RZAA/8200/1400

DEFAULT
VALUES1 C laa/ti00/1100

3-17

The COPY command "C® copies the source to destination, which must be
RAM. The source is specified by its starting and ending address. The
destination is specified by its starting address, To insure that the
source {s correctly copied, each hyte is read after it i1s written, If
a mismatch is detected between source and destination, an error message
is printed for each incorrect byte. The message format is similar to
that described for the PROGRAM command,

In order to nrevent accidental destruction of RAM based nrograms, the

default values for the COPY command are oreset to copy the first byte
of avalilable program RAM to itself.

2.3 PRNOGRAM CommAand
FORMAT 2 P source-~starting/source-endina/destination-starting
EXAMPLE: P 1188/ 20472008

DEFAULT
VALYES1 P N AB/18FF/2000

The PROGRAM command "P¥ transfers an NSC Tiny BASIC source proaram to
the MM2716 EPROM (U16 In Fiqure 1-4). The source nrogram is snecified
oy its starting and ending address. (The ending address of the source
may he easily obtained by examinina the NSC Tiny BASIC TOP varianle,)
The source re ains unchanged by the nrogramming oneration. Since the
EFPRCM nroaramming hardware {s mapned into address 2, the starting
Address of the Aestination must always beain with hexadecimal #2#, The
default values for the PROGRAM command fills U16 with the NSC Tiny
3ASIC nroaram located in the first 2K bytes of available orogram
memory (X/]132 - X218FF), If a previously programmed EPROM contains a
sufficient number of unprogrammed bvtes, new nrograms may be adied
without erasing the oroqgram{(s) previously written.

To insure that NSC Tiny BASIC programs are correctly written into
EPROM, the PRIGRAM command Automatically reads each byte after it is

written. If A mismatch is detecterd, the following error message will
he printed for each byte:

ADDHESS BXXX SB XX IS XX

The X’5 above renresent hexadecimal digits. The #SA" {5 an abbreviated
notation for "“should be®, Since the U156 EPROM is mapped into address 2
for READ operatfons (refer to Figure 1.5), the first Algit of the FPROM
address will Aalways begin with hexadecimal "84, (The address actually
presented on the EPROM address linmes {s agiven by the three least sig-
nificant address digits in the error messaqge,)

3-18

-

‘.,df‘#

2.4 VERIFY Command

FORMAT ¢ V reference-starting/reference-ending/destination-~
starting

EXAMPLET V BOOA/BT7FF/8800

DE FAULT
VALUES? VvV 1103/18FF/8000

The VERIFY command #V" yerifies the destination against the reference.
The reference is specified by its starting and ending address. The
destination is specified by its starting address. The reference and
destination remain unchanged by the verify ooeration.

The default values for the VERIFY command cause the Ul6 FPROM to be
verified against the first 2K hytes of available RAM memory (X2110¢ -
X?18FF),. If a mismatch i1s detected during verification, an error
message will be printed for each incorrect byte. The message format is
similar to that described for the PROGRAM command. -

The VERIFY command is useful to check the contents of programmed PROMS
which may have lost their identification, or may otherwise contain data
of doubtful accuracy. It does not need to he used after a "COPY" or a
"PROGRAM" command because a veriffcation is performed automatically at
the end of each of those functions,

2.5 FRASE CHECK Command
, FORMAT F source-starting/source—ending/hexadecimal-value
FXAMPLE®s V 1102/ FF/0%

DEFAULT
VALUES: V BAM/8TFF/FF

Tﬁe ERASE CHECK command “E* verifies that all bytes contained in the

source are equal to the two digit hexadecimal value specified in the

last field of the command. The sourte remains unchanged by the erase
check operation.

The "E" command may be used to test whether or not all or part of an
MM2716 EPROM is erased., The default values for this command are nreset
to test that the entire MM2716 EPROM (Ul6 in Figure 1-4) is erased, If
an incorrect byte is located, an error messane is printed, The message
format is similar to that described for the PROGRAM command,

The ®E" command may also be used to locate a specified byte In a given

address range, In this case all bytes that are different from the
specified hexadecimal value will be flagoed as errors.

3-19

2.6 FILL Command

FORMAT: F destination-starting/destination-ending/hexadecimal-
value

EXAMPLEs F 1200/1428/00

DEFAULT
VALUES: F |118@/18FF/FF

The FILL command #*FY writes the two digit hexadecimal value specified
in the last field of the command to the destination. The destination
is specified by its starting and ending address. Since the FILL
command reads each byte after it is written, an error message is print-
ed wherever the byte read does not match the byte written, The messaqge
format is similar to that described for the PROGRAM command.

The FILL command may be used to fill all or part of available program
RAM with the erased value (X“FF) for the MM2716 EPROM. This would

normally be done prior to entering a program into RAM. The default
values for the FILL command fill the first 2K bytes of available RAM
with X’FF, 1If the FILL command is issued after & nrogram has entered,
care should be taken to correctly specify the proper address range or

the program may be partially or totally destroyed.

Ihe FILL command may also be used to verify that the orogram RAM is
functioning. This can be accomuvlished by executing this command sev-
- eral times, using the hexadecimal values X’FF and X’®@. This procedure

" will verify that a logic @ and 8 logic | can be written to and read

from each memory bit.

2.7 DUMP Command
FORMAT ¢ D starting/ending
EXAMPLE: D BO9a/80FF

DEFAULT
VALUES!: D 1103/18FF

The DUMP command #D® prints out the contents of the specified address

range in hexadecimal and ASCII format. Nonorintable ASCII characters

are designated by 8 neriod. The hexadecimal/ASCII equivalents of six-
t een memory bytes are printed out on each line, in the following for—

mats

BFA? 32 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 0123456789ABCOEF
8Fi1@ OD 7F OA 51 54 59 11 12 2A 2B 2C 54 48 49 53 17 ...QTY..»+, THIS.

The four hexadecimal digits at the beginninag of each line represent

the address of the first (left-most) byte. Memory contents are not

affected by the DUMP command, The default values cause the first 2K
bytes of available program RAM to be printed out,

~

3-20

2.8 LOAD Command
FORMAT s L displacement
EXAMPLE: L 1020

DEFAULT
VALUES? Lo

The LOAD command ML" loads an assembly lanquage load module (LM) into
memory from a paoer tape, (For a detailed description of the LM tape
format refer to Aooendix E.,) The starting memory location where the LM
will be stored is specified on the LM tape, If a different starting
location is required, an optional disvlacement (X/APA3 - X’ FFFF) may

be specified in the LOAD command. In this case the starting address
will be equal to the address specified on the LM tane plus the dis-
nlacement specified in the LOAD command. The default value of the dis-
placement is @.

The GET routing built into the NSC Tiny BASIC interpreter receives 7-
bit ASCII characters which are then stored in memory as B-bit bytes.
These bytes have the most significant bit, B7, set to @. Since assem-
bly lanatage LMs require recefnt/storage of 8-bit bytes, the GET rou-
tine cannot be used to receive assembly lanquage LMs, This oroblem
can be easily overcome by writing an B-bit GET subroutine In assembly
lanaquage. This subroutine can then be called, when regquired, via the
NSC Tiny BASIC ®LINK*" statement. The subroutine requires less than

50 bytes and 1s shown in Apoendix D. The bytes that comorise this

‘routine may be entered into RAM, one byte at a time, using the "av

onerator.

READ COMMAND
FORMAT: R DISPLACEMENT

EXAMPILE: R 1000
DEFAULT VAILUES: R 0

The READ command "R" reads a cassette resident program and stores
it into memory. The memory locations at which the program will be
stored are specified on the tape as previously described. 1If it
is necessary to read a program into memory at locations other than
those specified on the tape, a optional displacement (X'0000 -
X'FFFF) may be specified in the "R" command. 1In this case the
starting address for each DATA record will be equal to the address
specified on the tape plus the displacement. The default value of
.the displacement is zero.

If a checksum error is detected when a cassette resident program
is read into memory, the user will be alerted by the message
"CHECKSUM ERR",

3-21

WRITE -COMMAND

FORMAT: W STARTING / ENDING
ADDRESS / ADDRESS

EXAMPLE: W B000/80FF
DEFAUIT VAIUFS: W 1100/1EFF

The WRITE command "W" writes the contents of the specified memory
address range onto audio cassette tape. The memory address ranqge
to be written is specified by its starting/ ending addresses.
NIBL2 source programs and/ /or assembly lanquage [M's may be stored
on cassette. Stored programs begin with approximately 5 scconds
of 0's which serve as leader so that the tape speed has time to
stabilize on playback. The leader also serves as an interprogranm
gap and allows the receiving program to achieve synchronization
with the clock pulses.,

The tape format consists of one or more DATA records followed by a
single END record. A DATA record is organized is as follows:

1) A single character (X'AS5) which identifies the start
of each record.

2) A byte which specifies the record type. (DATA
record=%X'0l: END record=X'03}.

3) A byte which identifies the total number of data
bytes in each record. The number of data bytes in a
single data record can range from 1 to 256.

4) The least significant byte of the starting address
where the data record is to be stored.

5) The most significant byte of the starting address
where the data record is to be stored.

6) 1 to 256 data bytes,
7) A single byte checksum (in 2's complement form) of
all bytes contained in the data record except for
the start of record character, X'AS.
An END record simply consists of the start of record character

(X'A5), followed by the record type (X'0D3) and the 2's complement
checksum.

3-22

CHAPTER 3
3.! Loading the FPROM Programming Software Into EPROM

The EPROM programming software shown Iin Appendix G may be transferred

to paper tape so that it can be conveniently used without having to
retype it each time it i{s used. This can be accomplished by initially
typing in the program and then turning on the TIY paner tane punch
after the LIST command has been entered, This procedure will oroduce
a program listing plus a paoer tane version of the program,

Since the EPROM proqgramming software occunies less than 2K bytes, it
can be readily nrogrammed into a 2716 FPROM, The resulting FPROM
could then be placed into socket UI7 in Figure 1-4, so that the EPROM
proaramming software would always be available without having to load
a paper tave. If this fs done, the contents of one FPRO¥» can still be
conied to another using socket Ul6 only. This can be accomolished by
rnlacing the source FPROM into socket Ul6 and then using the COPY com-
mand to transfer the FPROM contents to the first half of RAM (X71) -
X218FF). Ffollowing this, the source EPROM may be removed from socket
U6 anD an erased EPROM put in its nlace. The erased FPROM mnay then be
programmed in the normal manner,

3.2 LoAading NSC Tiny BASIC Proarams [nto RAM

Since the first 2K bytes of avallable nrogram RAM (X“180 - X’I8FF)
are not required by the FPROM programmina software, they may be used

to store a user’s NS5C Tiny BASIC nrogram.

Note from Appendix G that the NSC Tiny BASIC variables J, D, M and P
all ooint to scratchoad RAM, The RAM utilized in program memorv X<I|Fa2
X21FFF. (Only A fraction of the bytes in this range are Actually
used.,) If desired, the RAM which is poresent in the INS8154 may be sub-

stituted, making the entire program RAM available for storaae of user
orograms,

3.3 Using the FPROM Proaramming Software to Program MM27i6 EPROMs

The FPROM orogramming software allows NSC Tiny BASIC programs to be
written into FPROM from the keybord, RAM, oaper tape, or from another
EPROM,

After the user has committed the EPROM orogramming software to EPROM
and pnlaced the latter into socket U117, this software may be executed
by entering the following commands

NEAN #BROA
After this is done the YPROGRAMY command, P, mav be entered to write

the user’s RAM resident nrogram into a blank EPROM located in socket
U6 shown In Figure 1=4,

3-23

Appendices

Page 1-21

APPENDIX A

Answers to Exercises

1, =32767 to 32767, Inclusive,

. Turn switch No. 3 on.

. 49

2
3
4, ERROR 4
5
6

. 123%(42/127)

e 2%3 + 4%5 Kk S%T = 6 + 20 + 42 68
= 123 =@
7. 16968 The true result, |,000_ 003,

Be 22771 200
Q. 1200%22/7
Page 1-25

1. 122 35 1
2. 47 95 2
3. 26 45

4, 37 73
Page 1-26

5. 103 3218

Page 1-33

1. Simply change Line 6¢ to read:s

3x| A = 3007

2208a/7 = 3142

A-3

is larger than 32767.

60 GO TO 30

Page |1-38
1 (a).

10
15
20
37
49
50
60
1A
80
oR

PRINT
PRINT
PRINT
PRINT
INPUT
PRINT
INPUT
PRINT
PRINT
INPUT

YPROGRAM TO COMPUTE AxX+B“
L L]

na

“A:-ﬂ'

A

.Bg‘”‘

B

[[R]

n x=ll H

X

10@ PRINT "A%*X+B ="3
11 PRINT A+X+B
1280 GO TO 7@

1 (b)),

12
20
30

49 PRINT -

50

PRINT
PRINT

PRINT

BPROGRAM TO COMPUTE AxX+B#
nuapQ[NT "HsPRINT "A=43s[NPUT A
PRINT #B=#3s:[NPUT B
Nug PRINT "X=%§s[NPUT X
wAXX4B ="33PRINT A*X+BtGO TO 49

Line 52 can also be written as followss

5@ PRINT WA*X+B =", A+X+BiGO TO 40

Page 1-40

The comma separates the string %AxX+B"
and the expression AxX+B,

Number (Decimal) Stored As A Byte (Binary)

3
6
7
29

a9 2 (2+1)

o000 Atie (4+2)

AR At (4+2+1)
aral 1191 (16+8+4+1)

The largest number that can be reoresented in a single byte
is the "all ones*® statet

AERERRREY J

(128464432+16+8+442+] = 255)

A-4

hY

Page |-48

STATEMENT N u \' N X
113, ,.INPUT N 6844

128 X = MOD (N,16) 6844 12
133 N = N/16 427 12
1400 W = MOD (N,16) 427 11 12
158 N = N/16 26 1 12
163 V = MOD (N,16) 26 19 il 12
178 U = N/16 26 { 10 11 12
Therefore, NSC Tiny BASIC prints 1 1 v 12

In hexadecimal the number is #1ARC
Page 1-=51

120 REM AIR PRESSURE MONITOR AND ALARM

113 PRINT ® #3PRINT #WHAT IS AIR PRESSURE™3sINPUT P

120 IF P<13 THEN PRINT YWARNING! AIR PRESSURFE TOO HIGH"
132 IF P>15 THEN PRINT ®WARNING! AIR PRESSURE TOO LOW+
144 GO TO 1o

Page =61

7% IF Ge<>X THEN GO TO 37sREM NOT A CORRECT GUESS, GET NEXT
GUESS

This renlaces both Line 7% and Line RA in the oroaram.

The following Is an even shorter way to write the orogram,
Tl"y it.

I7 REM GUESS THE NUMBFR GAME

20 X=RND (1,109)sREM X IS THE SECRET NUMBFR FROM | TO 10@
3% PRINT ®uspPRINT ®WHAT IS YOUR GUESS"¢

4% INPUT G:REM G WILL BF THFE GUFESS

54 IF G<X THEN PRINT *YOUR GUESS IS TOO SMALL":GO TO 3m
63 IF G>X THFN PRINT "YOUR GUFSS [S TOO BIG":GO TO 32

778 PRINT ®YOU WIN, LET”S PLAY AGAIN.%:GO TO 2a

Page 1-66

|l. The results of the RUN will be the same as those shown on page 1-67.

2. No. Try it, See below.

>RUN
I 1 SQUARED
| |
2 4
3 9
16 256
3. 181
Page 1-68

1. The orogram will run the same as before.

2. The program will now print values and squares for numbers
from | to 16,

3. The proqgram will not work. Every line will be | 1. Further-
more, the program will not stop by itself. You will have to
npress BREAK.

4, The results will be the same as for the program on page |-69,.

Page 1-72
1. >RUN 2, >RUN
1 1 | I |
2 3 2 2
3 6 3 6
4 10 4 24
5 15 5 129
3. 15 4, |2@
5. 1 28 6, 7 5p40

B8 =25216 Correct answer > 32767

A-8

Page 1-73

7. >1@ PRINT ““tPRINT "N=%3:INPUT N
20 S=0 '
3% FOR K=1 TO N
43 S=5+K#K
5@ NEXT K
607 PRINT “SUMSQUARED =#3:PRINT S

Line 68 can alsn be written as follows:?
60 PRINT “SUMSQUARED =*_§

Note the comma

Page 1-94

(At@ REM STRING COMPARISON SUBROUTINE

1223 REM SFT-UP STRING ELEMENT POINTERS, C AND D

A3 C=AtD=R

1#4@ REM COMPARE PRESFNT C & D LOCATIONS. IF UNRQUAL, FRROR
RETURN

105@% IFeC<>fD PRINT ®THFE STRINGS ARFE UNFQUALY:RFTURN

1267 REM IS THIS THE LAST CHARACTER IN THF STRING (CR)?

1870 1FeC=#A0 PRINT #THE STRINGS ARFE FQUALYSRFTURN

138727 REM NONF OF THE ABOVE, CHECK NEXT LOCATION.

1720@ C=C+1:D=D+1:G0 T2 1059

Page |=172

1% A=#FFFF

27 @a=11REM TURN LIGHT OFF

34 B=@

4a DO .

50 IF 6A=1 THEN GO TO 2a:SWITCH IS OFF

6@ RB=B+i

7% DELAY 12

84 UNTIL B=200tREM SWITCH MUSF BFE CLOSFD 2 SEC
o @A=AtGO TO 3¢:tREM TURN LIGHT ON

Flowchart

G

y

TURN LIGHT
OFF

!

PRESET

DELAY

>

ON

:

INCREMENT
DFELAY

NO

l

YES

TURN LIGHT
ON

SWITCH

OFF

Error Number

OO~ a W) -

APPENDIX B

Error Code Summary

Explanation

Out of memory
Statement used improperly
Unexpected character (after lenal
statement)

Syntax error
Value (format) error
Fnding quote missing from string
GO target line does not exist
RETURN without nrevious GOSIR
Expression, FOR-NEXT, DO-UNTIL

or GOSUB nested too deenly
NEXT without orevious matchina FOR
UNTIL without previous DO
Division by zero

APPENDIX C
Codes

ASCII

The following table contains the 7-bit hexadecimal code for each
character in the ASCII character set.

ASCI1l Character Set in Hexadecimal Representation

7-bit
Hexa-

Char-

decimal acter

Number

T-bit

Hexa- Char-
decimal acter
Number

7-bit
Hexa-
decimal
Number

o
78]
a2
"3
24
a5
@6
a7
28
LY
AA
28
acC
@D
AE
@F
i
i1

13
14
15
16
17
18

TA
IB
1C
iD
IE
IF

(7Y

2
WV A s QDO ABLWLN=CINe |* 8 wm v NR 2=
o

40
4]

42
43
44
45
46
a7
48
49
4A
4B
4C
4p
4E
aF
50
51

52
53
54
55
56
57
58
59
54
58
5C
5D
SE
5F

Char-
acter

T=-bit
Hexa-
decimal
Number

AN ESC-INDVO VOZEMrAC~IQOTIMOUOI» Y

6@
6l

62
63
64
65
66
67
68
69
OA
6B
6C
6D
6E
6F
T
71

12
73
T4
75
16
77
8
79
TA
78
c
7D

7F

Char-
acter

NS XZgCNTADODDI =" awrmITOopAdAd o

ESC
DEL,
RUB

Definitions of Non-printing Characters

Character Definition
NUL Null
SOH Start of Heading (also start of message)
STX Start of Text (also EOA-end of address)
ETX End of Text (also EOM—end of message)
EOT End of Transmission (aalso FND)
ENQ Enquiry (also ENGQRY, WRU)
ACK Acknowledge (also RU)
BEL Bell)
8s Backspace
HT Horizontal Tab
LF Line Feed
vT Vertical Tab (VTAB)
FF Form Feed
CR Carriage Return
SO Shift Out
SI Shift In
DLE Data Link Fscape
DCI Device Control |
DC2 Device Control 2
nec3 Device Control 3
DC4 Device Control 4
NAK Negative Acknowledge
SYN Synchronous Idle
ETR End of Transmission Block
CAN Cancel (CANCL)
EM Fnd of Medium
SUB Substitute
ESC Escape
FsS File Separator
GS Group Separator
RS Record Separator
us Unit Separator
sp Space
ALT Alt Mode
ESC Escape
DEL.,
RUB Delete or Rubout

APPENDIX D

NSC Tiny BASIC Language Summary

STATEMENTS texcept for INPUT, may be used as commands)

NEW exor

NEW

RUN
CONT

LIST (exor)

HEM anything
CLEAR

{LET] var = expr

[LET) STAT = expr

[LET] fifactor = expr

Establishes a new start—-of-program address
equal to the value of “expr/. NSC Tinv
BASIC then executes its initialization se-
auence which clears all variables, resets
all hardware/software stacks, disabhles in-
terrupts, enables BRFAK capability from the
console, and performs the nondestructive
RAM search described in Chanter 2, Section
2. If the value of “exnr” points to a ROM
address, the NSC Tiny BASIC oroaram which
begins at this address will be automatic-
Ally executed. Program memory (including
the end=of-program pointer used hv the ed-
ftor} is not altered by this command,

Sets the end-of-proaram pointer eqgual to
the start-of-proaoram pointer so that a new
nrogram may be entered. If a program
already exists at the start-of-proagram
address, 1t will be lost.

Runs the current orogram,

Continues execution of the current orogram
from the noint where execution was sus-
nended (via a STOP, consnle interrupt, or

reset),

Lists the current program {(optionally
startinag at the line number soecified by
(expr).

Remark (no coperation).

Initializes all variables to 7, disables
interrupts, enables RREAK canability
from the console, and resets all stacks
(Gnsus, FOR=-NEXT, DO-UNTIL)Y.

Assiaons exoression value to variable,

Sets the STATUS word eaqual to the least

significant byte of “expr’/. When the
STATUS word 1s used to enable interruots

at the hardware, nrocessing will be
deferred for one statement,

Sets the memory location pointed to bv
“factor’” equal to the least significant

bvyte of “exnr-.

D-1

{LET] sfactor = "string”

(LET]) factor = factor
PRINT expr
PRINT *string”

PRINT sfactor

IF expr [THEN]
statement(s)

FOR var = expr TO expr
[STEP expr]

NEXT var
Do

UNTIL exor

GO TO expr

GOSUB expr

RETURN
INPUT wvar
INPUT Sfactor

LINK exor

ON expr!, expr?2

- T e T T T T e T e ey T L T Y 7T T T e—"—— T} ST} T Sy Al Wl Y. = . v el

Assigns a string Iin RAM starting at the
address ?factor’. Strings are terminated

by a carriaqe return.

Memory to memory string assignment,(cooy).
Prints the value of “expr”?.
Prints the string,

Prints the string starting at the memory
address “factor’,

Remainder of the oroqram line is executed
i1f expr is true (non-zero).

FOR loon initialization., FOR loops may be
nested un to four levels deep.

FOR looo termination.

D0 looo initiation. DO loops may be nested
up to eight levels deep.

DO loop termination.

Transfer control to statement number
'eKDr" -

Call subroutine at statement number “‘expr’.
Subroutine (including those servicing in-
terruots) may he nested up to eight levels
deen,

Return from subroutine.
Read value from ctonsole into variable,

Read string from console into memory be-
ginning at address “factor”.

Links to an assembly language subroutine
which begins at the address “expr”’,

Interrunt processing definition. When
interrupt number exor! occurs, NSC Tiny
BASIC will execute a GOSUB beginning at
line number exor2., If exor 2 is zero, the
corresponding interrunt is disabled at the
software level. Interrupt numbers may bhe
I or 2. Use of the ON statement disables
console interrunts (BREAK function). In-
terruots must also be enabled at the hard-
ware level by setting the Interruot Enable
bit in the status register {(using STAT=!,
for example).

R
%

DELAY exor

STOP

OPFERATORS

Arithmetic operators:

Relational operatorss

Logical oneratorst

@factor

FUNCTIONS

STAT
TOP

INC (X), DEC (X)

MOD (X,Y)
RND (X,Y)

Delay for expr time units (nominally milli-

seconds, 1-1¢44A),

Delay @ glves the max=

imum delay of 1240 milliseconds,

Terminate program execution,

A messaage is

printed and NSC Tiny BASIC returns to

COMMAND mode.

addition
subtraction
multiolication
division

less than

agreater than

equal to

no equal to

less than or equal

to

areater than or

equal to

logical AND
logical 0OR
logical NOT

Al VA ~* | +

A
n

>=

AND
OR
NOT

Read a byte from memory/perirheral, or
write a byte to memory/peripheral.
Factor is the memory/neripheral address,

Status Reaister contents,

Too=0f-Proaram address (first available
memory address after end-of=nroaram bvte),

Increment or decrement a memory location
(non-interruptable for multinrocessing),

Modulus function (remalnder of x/v),.

Random number agenerator (in interval x,y).

COMMANDS (cannot he used as statements)

NEWN expr

NEW

RUN
CONT

LIST exor

Establishes a new start-of-program address
equal to the value of expr. NSC Tiny

BASIC then executes its initialization
sequence which clears all variables, resets
all hardware/software stacks, disables in-
terruots, enables BREAK capability from the
console, and performs the non-destructive
RAM search described in Section I1I., If

the value of expr points to a ROM address,
the NSC Tiny BASIC proaram which beqgins at
this address will be automatically executed
and program memory (including the end=-of-
program pointer used by the editor) is not
altered by this command,

NEW followed only by a carriage return sets
the end-of-program pointer equal to the
start-of-program nointer so that a new
oroaram may be entered, If a orogram
already exists at the start-of-program
address, 1t will be lost.

Runs the current proaram.

Continues execution of the current nrogram
from the point where execution was sus-
pended (via a STOP, console interruwt or
reset).

Lists the current orogram {ootionally
starting at the line number specified by

expr).

D-4

Vil "

APPENDIX E
NSC Tiny BASIC Grammar

All {tems in single quotes are actual symbols in NSC Tiny BASINt all
other identifiers are symbols in grammar, The eaquals sian %=, means
"is defined as"i oarentheses are used to gqroup several items to-
gether as one tem§ the exclamation noint, #!#, means an exclusive -

. or choice between the ftems on either side of ity the asterisk, ",

means zero or more occurrences of the item to its lefty the olus
sign, ¥+", means one or more repatitionss the question mark, #?24,
means 2ero or one occurrencest and the semicolon, "1¥, warks the end
of a definition,

NSC Tiny RASIC =« line = Immediate-statement
! Program=line
3

Immediate-gtatement = (Command ! Statement-list) Carriage-returnt
Program-line = (Decimal-number] Statement-1list Carriage-return)s

’NEW” Decimal=-number?
LIST” Decimal-number?
/RUN~

-*CONT -~

Command

Statement-l1st = Statement (7t7 Statement) +«j§

Statement = /LFT” ? Left—part 4=/ Rel—-exp

! /LFT? 7?7 #¢$7 Factor /=7 (String ! 757 Factor)
!t 2G0O2 (TO” ' ’SUB”’) Rel~-exn

! /RFTURN”

' (*PR7 -t ¢PRINT?) Print-list

! 21F* Rel—-exny “THENZ ? Statement—)ist

DO~

! UNTIL” Rel-exn

t FOR- Variable =7 Rel-exp *T0” Rel=-exp (7STFP” Rel-exn)?
! NEXT+ Variable

! INPUT” #57 Factor ! Variable-list

! /LINK” Rel=-exp

! “REM? Any-Character=Fxceot-Carriage—-Return *
! /STOP”

! YCLEAR”

1 ’DFLAY?” Rel-exn

! 20N” Rel=-exn *,7 ? Rel=-exn

1]

E-1

Factor = (Varfable ! Number ! Function ! “(< Rel-exp “)7)i%

Left—part = (Variable ! 287 Factor ! “STAT“) 3
REL-EXP = Term rel-on term
STRING = 247 Any-character—except—="=-or-CR7#7
VARIABLE = ’A’ ! ’B" !-ococ."Z"
VARIABLE-LIST = Variahle (7,7 Variahle)«
PRINT-ITEM = (Rel-exp ! “$’factor ! String)
PRINT-LIST = PRINT-ITEM (7,7 PRINT-ITEM)*>(“3~)?
Function = ’MOD’ “(“ Rel-exp 7,7 Rel—-exp “)}~
! ’RND” #(7 Rel-exp 7,7 Rel-exp *)7
! 2INC” #(“7 Rel-exp “*)*
! ’DEC* ’(’ Rel-exp ”7)~
4
Term = Factor Termop Factor

E-2

APPENDIX F

1 A=7224: & 4="01 234547 29ARCDEF " 2 L=
'INPHTﬁF X=4 052 Y= 7 A=
MIFC=A7Y=a4TS s 7Y e GRnTNnL s
AIFC=RAT=4S000G NWOTOLS
HIFD:&@}rﬂHOUQ:Y=ﬂ97FF:H=3j:DU?DJS
SRR P AN TR AT IN R
"Tthkﬁ?:H1?ﬂ:G'-..hHTu 5
STFI= 7&1"0:7;1:2~u..~1'h=w2 GOTa1S
ey YeE 7=Qr Sl G2 GOTO1LS
2aG=4 T GOTING
TITFO=R7 =215 1 5= G4 A GNTHIS
1 2IFC=ET =08 220 S=1 s G=q 7 e 0TOLS
PEARES TNETIT EREY G GOTOL
VAPRTOONHE s GOTON
PEN=Lr)RR TGE0T O
[RS8
1700SURSO: IF(T=4T DR (T=47)OR{T=44 yGOTN2]
PATeT 4R TF(TCOIAR (T 27 MR T2 YANTIO T 7) GOTIOLE
TVIFT R T=T~7
TORELARFEATIGTTOL7
1IFN*1X R GOTOT4
ST FN=2Y=RaGE0TO 4
;??:R
TANFN+ T IFNT-EGOTON
FRIFT=4#D00T0LE
SEBDTOL A
DAFORISXTOY: IFC=A7RI=@]T
IBIFRI=RIGOTIRG
TA=7tE=RT i C=07:: GOSHIRAES
RO7=Z2+1iNEXTI i GOTOL4
FIIFCRT=YTOY: IFC=7081=2
SRTFRI=250NTNRa
IEA=] IR =T i GOELIR4E
HANEXTT 00TV S
EEFORT=0TO(Y-X)t @{7+T)= X+T) P IF@ (#4L000+74+1)= (X+)GOTOEY
SEAEHAOGDOF I+ TIRE=@(X+ 1) s C=@ (HL000+7+ T) ¢ GOASURIS
ATHEXTIsGOTOLS
TEPR"TLURN READEFR ON":L INE#S0Z1 : GOTO40
SEFPRUCONNECT RS-Z22"d L INE#2D5R
AOTFZ=1FR"CESIIM ERR":GOTOY
A41GATOL4
GEFORI=XTOYESTERIAIH=T 1| INLHZE4E tEM=" . . . s s s e e vt e r rn s "
AAF0RL =TT I+ 15 H=RL. s LINKS#ZIEZF
SATF(H-ZI YAND(H-#7RY@ (M+L. -1)=H
ATMNEXTI_ s FREMINEXTI2GOTOLS
ALLTINERSESF:GOTOL4
7L INE#EFAD I GOTO40
4ZPR"ANDRESS "5 tH=AI L INEH#HSESE: FR"SR "3 tH=B:LLINK#SEJF:FR"JS "3:iH=C
GAFLINFE#SERF:PR" "t RETURN
AOT=@FsFP=F+1: IFT=22G0TOS0
S1IRETURM

I+17:M=[i+2: P=f+70sPR" M S
P GOSHES G s C=T GO SUBRS O P Te R =t - 7

REH
R

RF

REM

o t
% T T

S070
BY RON

M This versian
Jeaibiiity.

APPENDIX

UTILITY FRAGRAM

FASOIAL INI, NS

of the pProgcam

Tt will

not run

G

¥
I L 2.3 1 7

has been
as shown

REM
RET1
REM

lines dn
NEES LGN
and will

noat have line
af the eroaram
run properly.

numbhers. The
is functionalil

exranded Far
SOLTICE SO
COmPrEs s e

v 1dentical

FE¥

imitialize

variahlas

Aand Fromet for

= ominand

AT A

F MO PEANATETARCIEFR Y
M=The0 1 {7 70

S ENTS B
FROCED
2 OTHRLT wP

KEAEEE f

LY
b

Y=&28% 2 7 GEESLIBE S0

C=T o GOELRE T o Fe =2

FEi
REM

Tzst
a8

default valuss
COmmasl,

letter. sottinem
The antered

Dl (11 Tx WA
needad for

I I Yoo P AmY o GOTA 1S I S i A W
4 IF s 2= O ETR E KT - : REM "V
BO0F L wAT N i) DOY=8EFFF O3 =31 o GiTi 1% I Y O
e~ fF C=E7000G H I I T POREM VEC
- IF 7 W G=EE O OGDIO OIS s RER VR
= 1IF ¥ s 2 Y=y & F=0 o3 T=t s FOSOT 1% o REM O
o TR L YoY=hy o2 F=0 O3 ARy s : LOTO O35S 2 FEM YAt
v IF = g Gsdr o GHTrn 1S T OREM YT
i IF 1o S o G=44 o GO0 15 : REM "o
i IF P 7=0 1 S=t ¢ h=47 ¢ GOTO LS f RFEM "R
FEM Freoar pecsages
12 PR O"INFIIT ERR" = G701
L4 FROCEONE" & GOTD i
REM Fraocess command orerands
1S W=t o TF F=#D GOTO G
14 R=0
17 GRS B0 o TF (T=4#I[1y OR (T=47) R (T=44) GOT0O 2]

e T=T-2&% @ IF (T<0)
IF To% 1=7-7

6 =1 AsReT 2 BOTO
IF N=1 x=R

R (T2 R (T ANMDY (T-2173) GaT 13

\7
GOTO
ST

74
>4

=R

s N=pN+: ¢ IF HNXS GOTO n
2% IF T=#0 GOTH 13
FH OGOTO 3 &

RElt f'rocens

YER, YWY Commands
FOR I=x TG v
IF D=47 @7=R]

e IF =1 GOTo 2G

Ty
iy

20

B

O]

40
41

44

47

A=7 : H=@I : =@Z : GOSUER 48
Z=2+1

NEXT 1

GOTO 14

RFM Process "EY, "F" Commands

FrR I=X T Y

IF (=70 @I=7

IF @(=2 GOTI 24

A=1 @ B=7 @ =01 : GOSLE 43
NEXT 1
GOTO 14

REM Frocess "F" Unmmarnd

Fiarg 1=0 TT (f-X)
BROL+1)=BIX+]
TF @(H#A0004+7+1 =@ (X+])y GOTO =7
AmReO00+RI+T ¢ B=8(X+T)
C=@(H&HOHO0+2+1) : MOSIIR 432
MEXT 1
GLET 14

REM Fraocess """ Command

PR "TURN READER ON" : LINK #8R21 : GOTO 40

REM Fraocess "A" Command

FR O"CONNECT RZ-232" @ LINE #2032

REM Fost pPracessing far "L, "A" Caommands

IF 7=1 FR "CESIM ERR" @ G0OTO 1
GIATO

REM Frocess "OY Command

2 FOR I=X TO ¥ STEF 16

H=J 2 LLINEK #5E4E = $M="_ cuaua-
FOR 1_=1 Ti¥ I+15
H=@L : LINK #IEZF
1F (H>321) ANDOD (HI#7B) @(M+L-1)=H
NEXT L
FR i1
NEXT I
GOTO 14

REM Process "W" Command
LINK #2E2F ¢ GOTO 14
REM Frocess "R" Command

LINK #2F&S ¢ GOTOD 40

REM Subroutine: Frint verification error

G-2

& PR OUADDRESS "5 @ H=A t LINK #3E4E
FRO“SR "3 & H=R @ LINK #2E3F
FR »TH "5 1 H=G

A% L Pk w8 IF oy PRV 2 RETLIRN

REF Subroutines Get ne=t character from 1neut borfer

S T=eF ¢ F=P+i 3 TF T=32 GOTO 50
=1 RFTLRN

G-3

5070 ASSEMRLER REV-A 04704779
m075 070 UTTLITY susrouTIines — APPENDIXH

A

i CHCHD

L INECU YT Y |

-n

LTITLE ASR0706G, 7 8070 UTILITY SUBRGUTINFEES
LIST O2F

“ASEYLANG T FROGRAM
RY
RON FOSIALLTNTY
NMATTONAL SEMTCOMDUCTOR

TASSYLANGT INCLUDES ALl OF THE ARZEMBELY | ANGUAGE

SURROGTIMES FEOUIRED BY THE NTBRLYT PROGRAM LT ILTTY

MECIR RS (58]

SIRCLTY AECYLIR

2070 NTIITY

NE JE NN 9P NN g

u

us ax uE uN

FE] R R L I L Y

-k am AR uE wR

~a

[T ST T

AR

DO0N0
OO0

OO0
OO

O0O04d
(W IRTRAY

CHOQ &

=070 ARFEMBLFR REV-

A ODAEIQASTE
SURRCIT I NES

. PAGE TASCILDY

TASCILDT DOWNLDADE AN ATZEMBLY | ANGLAGE LM OR MiBL. PHURD:
PROGRAM AT 4800 BALD IN RESFONSE TO THE COMMAND 76407, 7T 1=
AlLED ENTERER TO 0 LOAN AN ASSEMBLY LANGUAGE (M FROM [aFFR
TAFE AT 110 BAUD 1ri RESPOMSE TO THE COMMARD - 7. FOR &OOTH
COMMANIE THE DOWN_DADED FPROWGRAM MUST RBE TN THE FlOem OF

ASLIT CHARACTERS. THIZ SURROITTME [LTI THF HTR
SLUBROUTINE “GECQ, ‘
TWt ARCII CHARACTERS EQIAL ONE BYTE. WITH THF MsT

AT THE
€15

STGHIFTCANT NIBRLE (MENY LOCATED
ANNRESS. THE LEAST SIGNTFTCANT NIBRLE
THE HIGHER MEMORY ATDRE=S.

LW R
Te LWATED

FE My

a7y

THE FILE FORMAT FOF A DATA RECOET I3 AS FOI L MW=

1y START OF RECORD CHARACTER (X702}

23 REVCORD LENGTH, X 91-X'FF. (2 ARCTT SHARD)
Ty MZR OF RECORD LOAND ADDREZS (2 ARCTI CHAR)
41 LER OF RECORD LOAD ADDRESS (2 ASCTT CHARY

5y RECORD TYFE (2 ARCIY CHAR)

(DHATA RECORD=X"00, FMD KECORT=X “01)

&) 1-255 DATA RYTES (2 ASCIT THAR FER RYTE)

7Yy RECARD CHECESUM OF THE HEXADEC TMAL
FOUIVALENT OF ALl BYTES IN 2) THRLE &)

IN 275 COMPLEMENT FORM

THE BALD RATE FOR DOWNLOADING CAN RE 110 OR DR 4200 RAUT,
GEFERDING UPON THE SLRROUTINE ENTRY POINT.
THE “AZCILDS SUBROUTINE REMUIIRES & BYTES OF =T7a4rk MEMOFY &

DESTROYS 2 &

CALLED.

A Es F=., THF NIBL2 ZHBROWTINE SEEC0 13

DISFLACENENTS RELATIVE T P32

NBYTES = O $ NIUMBER 0OF DATA BYTES IN

5 DATA RECORD
MCESUM = 1 3 CHFEFCESIIM FORMED TN MEMORY
RECTYF = 2 s RETORD TYFE
MM = 3 5 HOET SIGHNIFTCANT NIBBLE

s OF 8 RIT BYTE IN "GETRYT"

5 SUEROUTINE
CTR = 4 s TR FOR DELAY @ END OF SUEBR
BYTCTR = 9 s BYTE CTR FOR “HEXTAS” SUBR

DIZSPILACEFMENTS RELATIVE TO P2t

LSET L. &4 5 CONTENTS OF NIBLZ VARIABLE
5 D POINTS TO MEMORY LOCATION
5 WHERE ASCII EQUIV OF Z/4
s ODIGIT HEX MUMBER 15 STORED.

H-2

-”

|}

S070 ASSEMRBIER REV-A O&/OD&/T73
ASSCT7O 070 UTILITY SUBROUTINES
AR TILT

1 M CHAR I3 AT LOWFST MEMDRY
3 ADDRE=S, T WHIMCH 0 F0iTiT S
OGOE » SET H,14 $ CONTENTZ OF NIRRT YAFTARLF
f H EQUAL STARTING ANDREZS OF
. s EACH DATA RECORT
O0O7E «SET X: 44 3 DISPLACEMENT FrOR HRECCGRT
¢ STARTING ADNRFSS
s (NIBLZ VARTARLE ¥
ONEG SET Y, 48 $ BAUD RATE TMNTOATOR i _fS
$ WHTOH AL D% FRIGIONIT (W
s STARTING ANNRESS 7 ¥adis
$ REOCAORIY AT 10 Eall iy,
s (MTIRLZ VAFIARLE 33
O0= «SET 2,50 $ CHFCESLM FREOR FD WS
$ (NTRLZ VARTARLE
FFOO “EET ZRAM, OFF OO0 $ TTARTING LLNwaT Lo
t OF SCRATCH RAM 795
$ WHICH FZ FIIINTS
FFE FLOELAY = OFFELC 3 LOECATTON WHERE Dy CONST
st FOR 3 BIT OLY 15 STORED
s (REGHIIRED BY MIBL2 “GECO-
s SLIERMUTINF
Q3 GECO = QU3 s ENTRY FOINT FIOR
5 NTBRLZ "GECS SUBRDLITINE
ASCILD: s BAUD RATE =110
2hEr 345202 B110: LE EQ,=X"Z52 5 STORE DELAY COLNT FOR 3 I
=0=4 2LEC =7 EA,FDELAY $ DELAY @ 110 BAUD
aDEs 7405 ERA NEXT 3 CONTINLUE
$ BAULl RATE =4%00
SLEs =40400 BH4ZO0: LD EA, =04 $ STORE DELAY COUNT FOR 1 KRIT
Shop SDEC ST EA, FLELAY s DELAY @ 4200 RaAHnN
Dl 27FE NEXT: ANT) S, =0FE $ DIZARLE INTERRUFTZ
SDSF 2700FF LD FZ, =SRAM $ FOINT F3 TO SCRATLH RAM
sz 203209 LOOFL: JESR GECT $ ASCII CHAR--A REG & E REG
2095 06 NSTOF1: LD A ;5 SAMFLE SA & WATIT UNTIL
sDes 0410 ANL A, =010 s SA=1l. (PARITY RBIT=1 IR
=09s ACFR RZ NSTOF t STOF RIT=1 HAS OCCURRED?
5 SA=1
=2D9A 40 LD AE s ASCII CHAR-->A RFG
2098 E402 XOR A, =02 $ LOOF IF CHAR <> X702

H-3

SO AESEMELER REV-N O&/06/7
AZROTEH 2070 UTILITY SUBROUTINFS
AT SN KRR 1]

speh YRz ENZ LOOF1 } (BTART OF RECORID

T X 0T FRLND

- JER GETBYT 3 GET RECORD L FMGTH (Tid HEX

EOAZ CROD &7 A,NEBYTES,F3 3 AND SAVE 17

=TAG CROL =T AL, MEESUM. P32 5 INITIALIZE MEMORY CHECESLN

e T ATE ASR GETHRYT $ GET MER OF LDAD ANTMRESS

ST OA F1ISH A s (ADDRH) & SAVE ON THE ST601
3 UFTDATE MEMORY DHECESIM

FURA F S AL &> MOESUM, B2
SivadT R0 = A MOESUM.FR

SHAF SO1ARE B = GETEYT s GET LSRR OF 00D ARNRESS

$ CADDRLY T A REG o E wEG
SR FRot N A, MOESLM, PE 5 LUFTATE MEMORY CHEL & S

DB CROY =T A, MOESIIM, F3

: e FaF A ADNRH~--78 FEG
ahips Ot XCH A, E s ADDRH--E REG, AGIRL-—78 i

et]

SURT ZA0010 L. FZ.,=01000 3 POINT P2 TO NIBLZ VARTARL ¢
STRA BERFE AN EA.X.FPZ $ ANL GISPL (NIBLZ VAR X)

iyl

RURC SR0OE =T EfAH. P2 ' SAVE RECORD START THNG ADDE
3 IN NIERLZ VARITARLF H
SRR 201458 JER GETRYT s GET RECORD TYPE TN A REG
anaTi CROZ =T A.RECTYF.FZ 3§ & F REG & SAVE T1T
A0 FRO1 YLK A, MOESIIM, F2 s UPTIATE MEMORY CHECEZUM
SNCS TRO) aT G, MOESLIM, F2
Fkﬂ? 40 LI A.E 5 RECIORDO TYFE-~ZA Rih
=S0CE 7020 BRNZ NOTOT A s TF RECORD TYPE = O
5 IT 1S A TATA RECIIRD
3 A REG=0, RECORD IS
f A DATA RECORD
$ IF BAID RATE=110 FRINT
s OUT RECORT START NG ’
s ADNLDRESS
a2OCa 2IE0 LD EA,Y. P2 s IF Y=1 BAUD RATE={10
SN E403 XOR A, =01
2NCE 704 BNZ DTARELD
s BALD RATE=110 _
1 PRINT OUT RECORD
5 STARTING ADDRESS

SO7 ASSEMRLER REV-Q 0O&/06/79
ASEOTO S070 UTILITY SUBROUTINES
AZCTLD

FRINT CR/LF TO FUT RECORD
GUINRFSE 1 A HEW & TR,

(NFCFS3SAFRY Fe Al LET
NOT CGETE S, MIERT BE SR

SDDO 18 CALL 2]

L]

~E SR

FOINT P2 TO LT THAR OF
ALDR MSGE & SAVE i B
FRINT OUT THF mE SakE:
CAINR=X"" WITHGLT KR/ F

ST PLIT F 2 =ALRME

I AT CAlLL 14

W ol JE uE

FRIMT OUT 4 CHGR a5 TT
Froliy OF & BYT hHiEX
STARTIMG fDNEE =5

Wi THOAY R LF

2) b rRT4

L L

1]

SonE 15 ALl = 5 PRINT CR/LF

a20De SE P Fe 3 RESTORE Tt FI

|

RECORD
RECORD

STAERT AN =L F& R
ST&ERT ADDN—--F2

SEDA BZOE DTAREC: LD
SpoC 44 Lo

EA-H.F2
2L EA

- uh

SO0 ZOLASE NXTRYT: JER GETBYT GET DATA BYTE

-

SDEO CEOL ET A @+1F2 STORE BYTE % INCR FTR

-

A MOESLIM. F3 LFDATE MEMORY CHECESIM

A, MCESUM. P23

Fa0l AL
CRO1 =T

A:NEBYTES.F3
NXTRYT

DECREMENT BYTE CIMNT
& LLODOF IF DTHINT I 0

. WROO
= TEFE

nLn
BNZ

we b

NOTOTA: JAER GETBYT GET RECEIVED CHE RSHM

Z201A2E

ShED O FLISH A 3 SAVE CHECESLM 0N ST4ACE
=0EE 13 CALL o 3 FPRIMNT CR/LF
ZDEF 328 FioF A $ RESTORE CHECESLN T3 A ReG

>
2
A]
o
4
LU
P

SDF0O F301 ADD ADD MEMORY CHECE =M

TEST

X
m
1
-
o
-

sSOF: SIM FOR ZERD

SUM I O, CHECKSUM

FRROR HA= QCCURRED

POINT F2 TO NIHRL:? VARIARLES
SET NIBLE: VARIABLE Z=1

ue e

Fe.=01000
EA, =01

SDF 4
&DF7

260010 LD
340100 ’ (W]

L]

S8OFA

ShFC
ahFE

8EOO

=] SN

[]
-
K1

C30Z ' REC
F401

T

Ln
XOR

BNZ

ER.Z.F2

A.RECTYF.FZ2
A,=01

LOGF 1

H-5

ok we

LI]

TO INDICATE CHECESUM ERRTR

LOAD RECORD TYFE & TEST
FOR END RECORD = X O

GET NEXT RECORD TF CLURREMNT
RECORD IS NOT AN END RECIHRD

REGT

SEGL

=IO

SEDE

SO

=EOn

SFOF

=R

RN

=1 =

TOOASSEMBLER REV-A
S3OT0 S070 UTTLITY

A5
CRird

CAFF
FOF7EF

PR

TEFT

1

4144
A7

b-1s

ATIRMTIG:

Db/ OB)T
SIIBROLIT TNES

CATCTY
LBYTE

A, =150
. CTR. P2

Ay =0FF
OEL.AY

ALCTH.F32
k1

b
o

“ANNR="
S 0RO

WA Cr WS uE MR GE W SR NS U

T LT |

YT T | FT T

o un

E1}

CLFRENT RECORDO = FNN RECTW.
DEL AY AFPROX . S4 =S 6 v TER
T SLEW OFF MWL 3T @R e
ENDY RECORD. THES WL, TR
THAT SA=1 UFON RETIIRN TO 4IRL.Z
FROGRAM @ 4200 BOIT, THI™
FFIAY TS OhLY REOUITRED 6T 2270
BobT, BUT DOEFS (OT HAOWVFE O
LGETRIMENTAL EFFFDT AT 0
BALT, LZING & TTY WITH &
REGTER REL OY,

SOVeE # OF TIMFES D4y

HivL BE OO LED

Lonaiy DELAY oy
DEL.AY FOR Z4A0% LISE7.

LFF REMENT & LLOaAD) AGR oo
L REFEAT IF LOOF CYUINT <3 0

FRIMT CRALF @ FHNIOF REDOED
(FINIR 110 BALID LIZING TTY)

RETLIRN

ADTRFESS MEG FOR 110 Ralip

2070 ARSEMBRLER REV-A .06/06/79
ASRO70 2070 UTILITY SUBROUTINES
ASCILD - GETBYT

>
-~ 3,
B

w17

=“FE14
HMELR
SE1D

Qs
0416
LR

40

shos

: 7402

FiZE7

OE
OF.
OE

O

RO

W 203207

Ok
0410
HOFB
41
2002

7402

AT

S

~TEYT: JZ

-FA

THETENTS
STNGLE =

TGETEYT
OF STACE
DESTROYS

THE BYTFE
THE E REG

SURROLT I

-
3

i
x

STOPZ: LD

AND
BZ
LD
BN
ERA
DF1: SUHK
IFT1: =i
SL.
SL
Sl
5
JER
TOF=: LD
AND
BZ
Lo
BNIt

BRA

GE TASCILD - GETBYTS

LBETS TWi A5CIT
HIT FYTE.

CHARAL T Ao ANTY Jithaes gt 0 T35 M 6T &

REQUIKES 1 BYTE OF SCRATOH RAM (T . Lt 4 Byifs

MEMORY. CALLS
REGISTER A AND

THE NIRL_Z SUBROUTINE Gidr . B

REGISTER E.

WHICH I% GOTTEN IS RETURNED IN THE A RELGLIZTEFR &b

ISTER.

m FARAMETERST THNOLUIDE:

e

GRCO

A5
A.=010
NETOPZ
A-E
ATOF 1
EHIFT I

A, =X"37

A,

A, =010
NZTOF:3
A E
ATOFZ

ORNIBL

H-7

DISF ACEMENT Fole7or 1o}

R o

wa e w9l

- gy we LT - NE WR NE ol LT T] -u T

F1) Ny e

-

GET ASCIT ENUIV OF e
IN A REG & F REG

SAMFLE SA % WATT LINTIL
SA=1. (FARITY BIT=i iR
STOP RIT=1 HAS O CURRET

SA=1
ASCIT ECUIV OF MEN--ZA REG

TEST FOR X 7Z0I=MIW-I=X 3%
X200I=0 REGI=X"0%. CONTIHLIE

CONVERT ASCII A THRU F
T HEX A THRU F

SHIFT M=N 4 BITS

T THE LEFT, FLAZING
ZEROZ INTO LN
FOSITION

SAVE MSiN

GET ASCII ECITIV OF LS
iN A REG & E REG

SAMPLE 28 & WAIT UNTIL
SA=1. (PARITY EIT=1 R
STOP RBIT=1 HWAS OCCURRETL)

SA=1
ASZI1 EQUIV OF LEN--TA RiEi

TEST FOR X" 30=LIR{=X"3%

X 00<=A REGI=X"0%, CORTINUE

=70 AREEMBLER S REV-A O&L/OR/T
AEEDTO RGTO LTI ITY SHRROTIME -

a5 = LETRET

2ERY FOET7 ATFED: SR A,=X"37 s COMVERT ASCTI A THRD F
s T HEX A THRU F

ZF IR DROR ORMTIERL ¢ OR Ay MaENL. P2 } OR MEN WITH LEN T4
s FORM & BRIT CHORACTER

TE2D &= .1 E.-A s PLUT CHAR TNTO B RFG

SFRE S0 RET RETLIRN

i~ SIMCL O HEXZ2ASCT

-y

2070 ASSEMRBLER REV-A 0&/06/7%
ATEOTG S070 UWTTLITY SHUBROUTINES
HE X A5 T

- FALGE THEXZASCT -

"THEXZ2AZZT Y WILL CONVERT A HEX NUMBER TO ik R
EQUIVALENT AND FRINT THE NMWBEER WITH A TRAL ING SFRGLE
AFFPENDED. 2 DIGIT & 4 NIGIT HEX NMMBERT MAY BE CONCERTED
DEFENDIITNG UPON THE ENTRY POINT.

EFT JET] ST}

-

3 THE SUBROUTINE REGUIRES & BYTES OF STACE MEMORY. DESTROYES
3 REGIZTERE A, E. T, & FZ, AND CALILLS THE SUBROGTIMES
3 TLONBYTS, "CONNIE", & NIRLZ CALl. 14 (FRTLN),

$ THiZ HEX NUMBER T BE CONVERTED IS ATTUEED TO RE ZTORST 1)
$ THE NIEBLZ2 VARIAHELE H. ANL THF ASCIT ELIIVALEAT OF Tiad nox
3 NMMBER 1% STORED IN THE MEIWORY LOCATIOH F£OTRT- 5 T F THE
i NIBLZ VARIAELF . THE OUTFLT STRIM TONST VS OF 2 G Td
3 CHARACTERS FIIR A 2 DISIT HEX MG@BRER. &M W G0] CHGE 7o s
3 FOR A 4 DIIGIT HEX NUMBER. THE MSH IS STOREDN CF 0 ToHeE o oddh 37

MEMORY LOCATIGN. WHICH T3 THE BEGIHHING OF THE 0T
STRING,

P]

MEXZASICT:

SETF 240010 FRTZ: (X Fis=05000 § POINT P2 70 NIBLZ VARIARLES
HE4T 2206 LD EA-TIP2 $ LOAD CONTENTS OF HIRLZ VaR D
SE44 B4O3ZO00 AL EA, =X yOALDD DISFL 7O END OF STRING

5 + 1

SE4T 44 LD FZ.EA 5 BEND OF STRING L0 4+ 1——10 2

SEAS C401 LI A= 3 STORE # OF BYTES T CONVERT
FE4AH CRO9 7 AsBYTCTR.F3
SE4ALC 740D ERA INTIT 3 CONTINUE
SE4E ZEG010 FRTA: (W ¥ FZ2,=01000 $ POINT FZ TO NIBL Y VARIGR ES
BESI SZ0& Ln EA. DL F2 3 LOALD CONTENTS OF NIBLY VaR L
SESID B4OSO0 ADD EA,=5 $ AL DISFL T END MF STRIMAG

;5 + i

neESds 44 LLi FZ.EA 3 OERD OF BTRING LOO + 1--2

SES7 C40% LD A,=2 7 STORE # OF BYTES TO CONVERT
2ESY CROY =T A, BYTCTR. P
SFESE C4A0 INIT: LD A, =0A0 $ STORE ASCIT "SR WHTOH WLLL
SESD CRFF ST A, R—1,F2 i AFFPEAR AT END QF FRINTED
! ETRING, WITH E7=1 T0O DENAOTE
$ END OF STRING. DECREMENT F2

1
g

SESF 2200140 FLI P2,=01000 s POINT P2 TO NIBLZ VAR &
3 SAVE OLIY F2

.,

H-9

AOTO ASEFMBLER - REV-A
AZE0Tn Q70 LTTLITY

HE X AT

EF AT
HEAS

=ET7E

SBEOE
Q=

13

ZOTESE COnNYY e

“ROT
S04

OR

i

7AFS

1E

[T\ AT A4

FRIMT:

D&/ Q&L T?
SLRROUTINES

L
LD

FOF

HR{

FAL L

RET

Wl

EAH.F.
T.EA

k.

F

r“b‘

CONBYT

A,BYTLTR, P32

FRINT

Faa. T
Mo b

CONVL

14

- ue um wR T T T Y

] ~n us

-k 2n ue we

e e e

LOATT HEX # T BE CUNVERTED
TO ASCTIT & SAVE 1T INT

REZTORE OLD F2

COrY HEX BYTE IN & REG T
T ES0IT CHARALTER=. =TORF
THHM TN ThHE QUTERGY STRT NG
% NECREMENT F2> RY =

DErQREMENT BYTE COHINT
L BEXIT IF COUNT = O

TRENIFER 14 BTT HEX
T BE CONVERTEI 70
TGO EA REG, 2 FLACY
MoSE IN THF A REG

CONTIMNUJE

FRINT MJT &SI Erifrw
(F HEX # WITH TRATI_ING
SPACE AND N0 CR/LF

RETHRN

SO70 ASSEMELER REV-A O0&/0&6/7%
ASEGT0 2070 UTILITY =SIIBROUTINES
HE X35 = CONBYT

. F&GE "THEXZASCY = CONRBRYTS

TCONBYT Y CONVERTS THE HEX BYTE FREZIENT 1 TmE v RragliifrR T
ITH ASCIT EQUIVALENT. AND STORES THE TW1 ASCTY CHARGLTLRE
CREATED IN THE MEMORY LOCATIONS FOINTRIC T By BT T
BE SET TO AVAILABLE RAM BEFORE THE SUBROITINE 15 ERMTFRED.
AN P2 15 DECREMENTELD BRY 1 WHEN EACH AT T CHOSALTER 1S
3 STORED.

o e

LT}

wh

THE SHRRUGITINE DEZTROYS REGISTERS A OND R #0000 7% X WFT
WITH o FOINTING T2 THE MS ASCITT QUGEIT. Ui, I =Td &0 00
THE LOWER MEMORY LOCATIOM. ’

LI)

AETE G COMEY T LD a6 oS BYTE VO 7
3OCOHYERTED T & R
CiagdE T & 1=l o0 4T

s Edadly aF L3 WIERDE

WE74 TOMFERE R CimiNIBE 2

<.

=ETT7 40 Lo WE $ REZTORE HEXL EBYTE 71 qRE

SHIFT MZ WIRELE Y0 &
MIRE E POSTTYION

HEZE
SETY AT
SETA G
HE7R O OSW

~»t e

DI DI

BE7L ZOTEGE AR CONNTER §OCONVERT & =STGRE a=ziy
Eaidl~ OF s I -

wE

T
~]
]
' n
n
m
—

RE TLifad

MaCF CONMIBE AN AL =0F M=k, OFF LS 4 RiTh

e

m
o
o

SERE FLOAB ANT= £, =0A 5 SURTRACT X Ga=10

2Eg84 £404 RF GE10 TEET RESIANT

-e

NTERLE WAS O THF 7
Ty NTIBERLE TG ARLTT

HEEA FARA i.T10s QT AL, =X 05

LI 3

ZESE 7408 ERS ST0ORE 3ODCiT TNUE

NIBRRI.E WAaZ 10 THRALL 3%
CONY NTBBLE T a=TIiry

LI

SERS F441 GE1D: AN A,=X"41%

SESC CEFF STORE: A.e-1,Fz

o
—

STORE AZCIT By OF
MIBBLE & DECR F2 BY |

L L]

SERE SO RET 5 RETLHIN
20 « THNCLD WRTAFE

RO70 ASSEMBLER REV-A 06704779
ASROT0O 20706 UTILITY SUBROUTINES
WRTAFE

. FAGE "WRTAFE

$ “WRTAFE- INTERFACES THE INS2072 TD A CASSETTE RECORLER FOR
5 STORAGE/RETRIEVAL OF BISER PROGRAM=. FPROGRAMS WHTOH MY BE
3 SAVED INCLUDE NIBLZ PROGRAMS AND ASSENMBLY LANGUAGE LMz,

3 WHEN THE “WRTAFE- SURROUTINE IS USED I CORLMONCTION 41 Th
s THE WIBLZ FROGRAM “UTILITY . THE UIER CAN SFECIFY ToF FLOCE
s OF RaAM TO BE WRITTEN ON THE TAPE. THE TaFE FiFMaT 15 505
3 FOLLONES

3 1) ARFFROXIMATELY 5 SECOGNDS OF 0% WHICH SERVE AS | EATER

2 20 THAT THE TAPE SFEED HAS TIME TO STABRTLIZE O

3 FLAYBACE. THE LEADER ALSD ALLOWS THE RECEIVIRNG

H FROGRAM T PROFERLY S¥NT TO THE CLOCE FHLAFS,

$ 2y ID CHARACTER=X "AS WHICH TNEMTIFIES THF “TAHFT O

H EOnH RELCIDRT.

3 2) A BYTE WHICH SFPFCIFIES THE RECORD TYFE:

H DATA RECORND=X "Gl END RECORU=X"0Q3

5 4 A BYTE WHICH TDENTIFIES THE TOTAL NUMBER

H CF DATA BYTE= TN EACH RECORII. N

$ N CAN RANGE FROM 1 T 254, (0O - 255)

3 5) THE LLSBE OF THE STARTING AUDRESS WHERE THE DATH

H RECORDY IS TO BE STORED.

H &)Y THE M2E OF THE ZTARTING ADDRESS WHERE THE TATA

5 RECORD IS TG BE STORET,

H 7)Y 1 = 284 PROGRAN BYTES

5 2) A SINGLE BYTE CHECESUM (IN 275 MOMPLEMENT FORM)

H OF ALL BYTES CONTAINER IN THE RECORD EXTEFRT FoOR

3 THE ID CHARACTER

3 DISFLACEMENTS RELATIVE TO P32t

Q000 LSET NB. O s NR=REMAIMIMNG # OF FGM RYTES
s T BE WRITTEM (> BYTES:
D00z LSET .2 3 N=# DATA BYTES IN DATA RE
OO0z - SET CESLM, 2 $ CESUM IS THE RECORD CHECH LM
s ADCUMLATED If MEMORY
Q004 L EET WRCTR, 4 s BIT COUNTER FOR
s THE “WRCHAR® SUERDOUTINF
OO0S5 LSET LORCTR, S 5 LEATER COUNTER FOR THE
s ENTH.DR ROUTINE (2 BYTES)

5 DISFLACEMENTE RELATIVE TGO FZ:

DOZE . SET X: 44 s LOC OF NIBLZ VARIABLE X
3 (MEMORY STARTING ADOR)

0O20 LEET Y. 43 5 LOC OF NIBLZ VARIARLE VY
s (MEMORY ENDING ADDR)

U770 ASSEMBLER REV-A 046/704/79

HEEO70 BO70

-WHRTAPFE

UTTLITY SUBRROUTINES
FFOOQ .SET SRAM. OFF 00 $ SCRATCH RAM T WHICH P2
$ FOINTS FOR THE “WRTAFE-
3 SLRROITINE
ZESF 2%FE WRTAFE: ANR =, =0FE s DISARLE INTERRUPTS
=ET1 FTOOFF LD Fz. =5SRAM 3 FOINT P32 T SCRATOH RAM
HESY ROFR AND S, =0OFR T SET Fi=0
SBESL 2RO OR S, =08 y SET Fa=1o
3 CALCILATE ANT STORE NRBR = # OF DATA RYTES T BE WITTTFH
SEDS 23nE0 LE EA. Y. F2 $ LOAT FNDING ANDNRESS
$ O (MNIRi 2 Y)Y INTO EA REG
SE TN RARE SR EQ.¥X.FZ T SUBRTEACT STARTING
s ADLDRF=S (NIRL P ¥
AR R40OI00G Al EA,.=01 $ AND 1t
SEDE SROD =T EA.NB,PZ 3 SAVE NE
1 SET PTR FZ = STARTING ADDRESZ WRHERE DATA IS5 TO BRE STOREN
<Efy S22E LIz LI EfA, X.F2 » LOAL STARTING ADDRE=SS
s IMTO EA REG
BEAT 44 Lo Fz.EA t SET F2=STARTING ADDREST
t SEND LEADER ROUTINE
: THIS ROUTINE TRANSHITS AOFFROXIMATELY S SECONDS ©OF 07
$ (APFROYX 2500 @ 5S00 BAUM TO ACT A% LEADNER. ALLMY THE TAF
y T SETTLE ON FLAYRACK,. AND T AlLOW FROFER SYND TO THE
1 CLOCKE PULSES.
3 SNOLOR ROUTINE PARAMETERS:
O . SET LORCNT,, 2S00 s # OF CLE PULSES IN LEATER
OQOSE LSET BITDOLY, %4 5 DELAY COUNT TO PROLDIICE 3
$ BIT LELAY
ZEA4 24CA0¥ SNDLDR: LD E&, =LDRCNT 5 LOAD LEARER COUNT
SEA7 3ZBOS ST EA.LDRCTR.FZ 35 ANDI STORE IT
SEAT ZO0S38F LOOPA: SR PLULSE $ WRITE CLE FULSE
SEAC C45E (1 A, =RBITDLY 3 LOAD DELAY COLINT
SEARE 20F72F JER DELAY s DELAY 1 BIT TIME
SEERI 83205 LD EA.LDRCTR.F3 3 LOAD LEADER COUNT
2EB3 BCOL10O0 SLUE EA,=1 $ DECR LEADER COUNT

H-13

RO70 ASTEMELER REV-A 04/04/79

ASRGTG 2070 UTILITY SUBROUTINES
WRTAFE
SBERA EBOS sT
SERS SR OR
SERY 7CEF BENZ
SEBR SAFFO0D RECORD: LD
SEBE BROO SURB
aECO 3F RRI-
SEM1 A40R EBF
TGN § T LEZSS: L.Ta
s =T e =
=000 LT
sREOO =
. 740K RRA
CEDA400 BTZS5s LIt
mRO =T
=e DT B300 LT
SFENd ROOGOL SR
SEDT7 SROO =
SEDY CEO7 NXT1L: LI
SEDR F40 ann
SELNTG CROX =T
SEDF C4/5 LD
SFEL 202%2F JER
SEE4 G401 L.L
SEE&A ROG2REF JER
SEEY CEaOr LIk
SERER Z2O2ToF JSR
SEFE 32 (W
SERF QIR JER
SEFZ2 FI0Z AL
ZEF4 CROX =T
SEFA 32 Ln
BFF7 40 L0
BEFR 20ZVEF JER
SEFB FZ03 ADD
SEFD CROZ ST
ZEFF Ce0t LOOPD: LD
2F01 Z0295F JER
SFQ4 F203 ALD

EA.L.DRCTR.F3

AL E
LOOFA

EA.=255
FA, R, F3
(4]

GTZ2=S

EA, iNH.P3
ANLF3
EA, =0
Ef. NB.F3
MNXT1

fa, =)
AN P2

EA-NE,F3
EA. =236
£EA,NB,P3 -

AN F2
a,=01
A, CESUM, P2

A, =X A
WRCHAR

AL =01

-WRCHAR

A-N.F3
WRCHAR

EA.F2
WRCHAR

A, CESUM, P2
A, CESUM, F3

EA.FZ
A-E
WROCHAR

A, CEEZLIM, P23

A,@+1,P2

WRCHAR
R, CESUM, P32

H-14

[T QT YT ST

-n

~u R

- us

un

-y un wn va TR] LT T JEVY |

. un

T |

R aE 4y

- e

A aR Nk

STORE HNEW LEADER COUNT

TEST FOR LEADER £0INT

=0,

LOAD 255
SUBTRACT NE
GET Y INTO A7
AND TEST IT

CY=1. NBI=PES
SET N=WR
SET NE=0

CON T INUE

LY=0. NRFZ2HS
SET N=O

SET NBE=NB-Z5&

LOAD N INTDD A REG e
ADD REDC TYFE=X"01
STORE INTO CHESIM

LOAD I CHAR=X"AS
WRITE CHAR ON TAFE

LOAD DATA REC TYFE
=X"01 & WRITE ON TAPE

LOAD # OF BYTES IN LATA RFC
2 WRITE OGN TAPE

LO STARTING AODR INTO EA
WRITE LSB GN TAFE

ADD CESUM TO LSB DF STARTING
ADDRESS & STORE NEW CEIUM

LD STARTING ADDR INTG EA
MZB OF STARTING ADDR-~>A REG
WRITE MS5E ON TAPE

ADD CKSUM T M5B OF STARTING
ADDRESS & STORE NEW CE3UM

WRITE DATA BYTE ON TAFE
AND CHAR TO CKSUM

LD DATA BYTE & INCR FTR ,fhl

3070 ASSEMBLER REV-A
70 mKOT7O UTILITY

ATEY
HRTGFE

LFOA

RO

FOS RO

O
SFOE
BFIO
BEI1Z

7CF 3

Ca0%
E4FF
FA40i

SOTEAF

SF15 =E

EF17 5

RS

AFLF
SFE

L]

L Bul

N
G B

L -
-4

O&/GESTD

SUBROUT INES

WRITE

LLO
BNZ

LI
XOR
AN
JER
LI

ENZ

A, CKSUM,. P2

A NP2
LOOPD

A, CKSUM, PR
A =0FF

A. =01
WRIHAR

EA-NB,PZ
fa.E
RECIIRD

RECORD ON THE TAPE

A =X~ A5
WRCHAR

AL, =03
HWRCHAR

fL.=X"FI
WRCHAR

H-15

we wh ur =

e

U]

aE uE

um am

LI)

STOFE NERK CRESUM

SET N=N-1
& LGOF IF NJI:0

LOAD CESHM INTO &
TAKE 275 COMFLEMENT
OF CRSM Al

WRITE IT 0N THE TaAFE

LAl MB % TEZST FoR O

WFRITE NEXT RECORD IF
NECG

MNE=0

WRITE TD CAAR ON TAHFE

WRITE EnD RECORD TfF&

=X "0 {fp TAFE

WRITE Z"%Z COHiPFLErENT
CEonia 0N TAFE
RETIIRN

aF

SOT0 ARZEMBLEFR REYV-A

RETTO
AT AFE

EO70 LTTLITY
- WRCHAR

-8

Ok SO0/ T
SURRIT TNES

. PAGE

"WRCHARY WRITES

TAPE. THF
FOINTER P
AN

SHRROWUT INE PARAMETERS

O01A SET
[uIgh s « =BT
ONRF L SET
RHEEA 45 WRITHAR: .11
SERR G40 L0
STETN RO =T
2FPF 40 SHIFT: L0
SFETO =E RR
b e B R = L.
BFEEF A417 EF
SFm4 TORIEF SENDLL =R
SES7 410 LI}
SFERT ZOF7EF JER
SRS FOSRIRF JER
FRF 241A T
F43 ZOF72F JER
=F44 7402 ERA
BE4L POSEZEF SENDO: JER
2F 42 CARF LD
SF4B ZOF7SF JER
SEFA4FE YRO4 OECCNT: DD
=FEE0 700N BNZ
FFS2 40 L.T¢
BFSR 50 RET

CALLLE THE

“WRTAFE -~ WRECHARS

THE 8 RIT THAR FREZENT TH THR A& REG O
FROGRAM DESTROYZ RFGISTER F., ASZIMES
s FOTMTING T0 RYTF OF AVATIARLE FAR

“DELAY S SURROLUTINS,
INCLLUGE?:
WRICTR LW WHERE RIT £0OLIMT WTLL

HILFRLY, 24
ENDEGLY, 24
FILDLY. 95

E,A

A, =03

A, WRCTR., F3
a.F

A

E.A

SENDG
FLILSRE

»=HILFIILY
DELLAY

FLIL SE

£, =ENDLY
DEL.AY

DECONT
PULSE

AL =FULTILY
LELAY

A»WRCTR,P3
SHIFT

AE

H-16

EELJEYY T

us uy

LY]

e

'1%

e

-y aa 1Y e e au

wu

Bl

BE STORFD RELATIVE T P&
COLUNT FOR 1/2 RIT LELAY
COUNT FOR END OF BRIT DELAY

CHLINT FOR 1 RIT DELAY

SAYE CHAR IN E REnG

SET BIT COHINT=&

XFEFR CHAR TO A RFG
ROTATE LSB TO BIT 7
WHFRE 1T CAH BE SENZFL
ZAVE ROTATED CHAR IN E

TEET RIT TO BE WRITTFN
BIT=1.

SENT CLOCE PULSE

SET DLY COiNT=1/%
OFELAY

RBIT TIME
T) MIDLE OF BIT

WRITE DATA RIT=1

BELAY TO END 0OF

EIT TIME
CONT TNLUE
BIT=0. SEND CLOCEKE FPLUL SE

SET DLY COUNMT=1 BI1T TIME
DEILAY 1 BIT TIME

DECREMENT BIT COUNT
REFEAT UNTIL RIT COLINT=0
RESTORE ORIG CHAR TO A REG

RETURN

(R,

&0O70 ASSEMRLER REV-A 0&/706&/77

ASRO70

WRTAFE — FLILSE

SO0F

OO0OO0OF

ZROG

CA40F
ZOF7EF

ZUFZ

C40F

SOF7EF

-r e W

wh

SOY0 UTILITY SUBROUTINES

- PAGE "WRTAFE - FULSE~

PULSE” WRITES 1 CLOCK OR DATA PULSE ORN THE TAFE. CALLS

“DELAY” SUBROUTINE, AND ASSUMEE THAT FLAGE FZ2 & F&
BEEN INITIALIZELD' TO THE STATE FZ=0 AND F3=1,

SURRIIJTINE FARAMETERS INCIUDE:

- SET 1,15 $ DFLAY WHITH SETE DLEAT TG
s OF POSITIVE EXCLRSTON

SET 02, 1% s DELAY WHICH ZETS DUFAT IO
3 OF NEGATIVE EXTURZICN

s GUTPUT PULLSE GENERATED BY COMBTNING

s F2 & F2 GUTFUTS AFFEARS A% FOLL =S

. ++4+++

H + Tii +

5 +4+++++ + ++r++++

] + D2 +

s +4+++++

PLILSE : iR 5,=04 s SET Fa=i. (F2=1)
LIt Ay =Dl 5 SET IELLAY DOLNT=L01
JdER DELLAY $ LELAY FOR Tl
AN 5, =0F3Z sy SET F2=F3=0
L. &, =02 $ SET DELAY CiiNT=07?
JER DELAY s DELAY FOR Dz
0R S.=03 $ SET Fa=l1. (Fz=0)
RET $ RETLIRN

« INCLD ROTAFE

THE
HAVE

=ZN70 ASTEMELFR REV-A OA4/0LITT
ASEOT0 2070 HUTILITY SUBRGUTINES
RIOTEFE

. FAGE

“ROTAPF -

P'L T }

SAVED AND

NE e

THE “RINTAFE "
A DAk LE THE

~a ue

STARTING

o ows e dE gy

MRy AT

FUEMes F

toTHE

1)

INTERFACES
STORAGE /RETRIEVAI
RETRIEVED
LANGLIAGE LM73.

SHBROLITINE RECHIIRES &

WHFRN & TaPE RESIDENT PROGRAM 1S
SFECIFY AN OPTIONAL DISFLACEMENT WHICH
ADDRESS
ATZEMPE Y | AMNGHAGE LMo
PO T T oS

AFFROLTMATEL Y

BYTF WHICH TTFENTIFIES

THE + SR W THE ZTARTIMG

"ROTAPE -

THE TN:EO7= TO A CASEETTE
F HISER FROGRAMS.. PRIOGRSGYS
INCLUDE NIRLZ FPROGRAME

FECOETER FR
W TOH My R
AR ASSEMKL Y

EYTES
AND

OF SEEATE HEAT
CRCTHRE

oM

SURROMITINEGS "GETRITS

v

READ TINTO RaAln. THE MSFR DAy
TS AR 79 TriF
OF EACH DATH FEOCORII. THIS FEATHRE & LS
AN MTIRE 7 FECIGREMYYS TO FE L NanFED

SPECIFTEN &0 Lrdn TTHF.

[—
T Ld

THF DATA WRTTTEN ot THE TAFF T 7

TOSECONME OF O
SHERD HAR

2 WHTH
TIME T
THE LEADER ALSO ALY DWE
FROFERL Y =YWE T THE
WHTODH IDFNTTIFIES

FE A I S Y X
G TPE i

THE FRFLFTVTRG
[T {0 O = B =i~

THE TAERT

TAPE

SFECIFIFES
EMI

THF REVORD TYFFES
RECTIFD= 2703 .
THEY TOTAL. WiMBER
IN EATH RECOSTE, .
T TS&, (0 — Z55)
ADTIRE =5 WHERF

THE 0iésTH

RE STORFTL.
START ING

TO RE STORED.

ANDRESS WHERE THE DATA

FrmnbRAM BYTES

FYTE CHECE =L
CONTAINED

(TN 275 e FMELGT
i THE RECORT

FOF-

. TLTEAT THFE

: FUO P RACE.,

5 FROGRAM TO

s 20 I0 CHARACTER=X A5
s fiF FaTH RERTRT.

. =Y A BYTE WHICH

3 DATA RECORT=X "0
s 4y A

i OF DT BYTED

: MOCAN ROMNGE FROM 1
3 ™)

3 FECOHD TS TO

: &Y THE =R OF THE

s RECORD TS

3 7)) 1 = N

* =Y A OSTHGLE

: F At BYTE™

3 FXOEPT FOR

s DUSFLATEMENTS

QOO0
GO0

LSET
RCVYOTR
STADR

DO

(I¥InY:"
i s

CEET

SODVINT

s DIEPLACEMENTS

GOTF o |

THE TD CHARACTER

RELATIVE T PTR P22

CESIUM, O $ CHFCESHIM FORMED TN MEMORY
= s # OF CHAR RITS RECEIVEDR
5 IN “ROVOHR T SUBFROUTINE
= 7 s RECDRD STARTING ANDRESS
! (2 BYTES)
K, 4 s # OF DATH BYTES I DATA REC
= 5 3 OSARMFILE COUNT (# oF SEMPLES=

$ I "GETRBITY SHBRRODTINE)

RELATIVE T PTR P7: _ﬂm‘
X, 44 H

STASRTING ADDR DISFLACEMENT

ASSEMBIER REV-A Q&/0&/7%
O S0740 UTILITY SUBROUTINES
E

s (NIBLT VABRIORLF 7
Ry SET 250 $ CHECHASUM ERRUOR Fo&n
3 (NTBLZE VARTABLE 73 -

SORATCH RET TO WHIVH F&
LI S PR S

FFOO «EET SRAM, OFF OO0

-l

SF &S IEFE ROTAFE: AN T =0F R § DISERLE THTDEROF TS
SEAT ZTOOFF LI Fs.=5RAM $ POTRT FI V0 ZCRATOH 5k
oy D40 FEFFAT: LN iy =il 3 LOAL O
] 2 O] LD E:i 5 SET CHAR=O TR E REG
AF &dr Ry 5T LA - T B e 3ORET CRAUM=G
SFAF ZODIEF SYNOLFD JSH GFETERIT 3 SHIFT RIT INTO CHLR
$ WHICH 15 FETURNED i
3 A REG ANME REG
AF72 E4A5 XiOR A, =X A% 3 TEST FOR CHAR=X A%
SR 74 TR ENY SYHNCLP $ GOTO SYNCLF JF CHAR L X A5

CHAR=X 'A%
GET RECORD TYFE in

LT |

SBF74 2ORTVEF JSR ROCVCHR

s A REG & E REG
SF79 Fa00 AL ASCEAUM,FZ 3 ADD CRSUM TO RECORD TYFF
SF7E CROD &7 A, CESUM. PS5 STORE NEW CHSUM

SF700 490 LI A F LOAD RECORD TYFE TMTO A LED

-n

2F7E E401 X » =03 3 TEEST A REG FOR DiATA RECORT

SFmO JCRe BENZ ERFEL s DATA RECORT XMITIFD IV &-04
$ A=01. DATO RECORD RBEING SELD

SFak ZOFE7EF DREC: JER FCVCHR 5 GET f=# OF DATA RYTES I
$ THE RECORD IW THF & REN

AFES CRO4 = A F3 5 SAVE N

SFRT7 FE00 AR A CEZUM. P32 5 ADD CEKSUM TO N

RF2Y CBGO =T A, CREUM. F3 $ STORE NEW CESUM

v 2OE78F JER RCVCHR $ ADDRL—-2A RED

SAVE ADDRL ON STACHE

~

E
E OA FUzZH A
F
1

SFEF FIZOG AL A, CESUM, F3 $ ADD CKSUM TO ADDRL
SF¥1 CROO = A, CKSUM.F3 $ STORE NEW CEZUM

SF?2 ZOET7EF JER RCVCHR 5 ALDRH~-A REG & F REG
SF9E F200 AL A CESUM, F3 $ ALD CKSUM TO ADNEA
SF93 CEROO ST A, CKsUM,. FZ $ STORE NEW CESUM

BFFA I8 POF A $ ADDRL-~->A ReG. (ADRDRH

. H-19

20700 ASSEMBLFEFR S REV-A

AZEOTO 2070 11T T

ROTASE

BFYR

SEED

RFOF

e o =
CHEEE Y
~Fhs
BFAAL
HEAS

=R G
2F AT

mEED

SFRT

=R

BoCE

=i

45
CORETEE
CFO
(e STS
CEON
YROS

7R

SR
FOET7 R
F =00

TR

SA0 L0
L=

b

TOETEF
Faon

TFR

TY

GRETDTA:

SRR

ERF:

O&/OE/TD
SHBROUT TNES

AT

FlLi=H
.1

SR
=T
AT
=T
FH_TH

BMZ

FOF
TR
A

R7

.o

=

RET
JER
ALD

HNZ

RET

ERA.X. P2

Fz

PZ.EA
RCONCHR
A.C+1,.F7
f, 0 =M. PSS
AL CESIM, P2
AN P32

GETRTA

P
RICVCHR
A, CESUM, P32

REFEAT

EfA,=01
EA-Z.F2

RCVTHR
A TESI, P2

SERK

H-20

wa uw um

'L

-

L IEEY BT BT e)

LI

P

wA dE NP ul WE uE wE

8 wa wl ue

PR BT T BT

~ e

ALREADY IN E FRED)
IN DISFLACEMFEMT
VARIARBLE X))

I=
AN
{NTRL.Z

SAVE NIBLZ VARTARLE PTR
XFFR RELX STARTTNG ALROR TO FT

DaTA RYTE--"A REG
STORE BYTE & INCR FTF
AL CESUH TGO DATA RYTE
STARE WEW MESLIM

DECR CHAR CTOLIMT. N, &

LOAD INTO A REG
GET NEXT DATA RYTE 1IF
EOLINT . M. T8 WNOT O

CHNAR OO INT—N=0

RESTORE NTFRL 2 YARTAGRLE PTw
TAFE CESUM--2RFG &

ADT CESLIM STORET Tid

MEMORY T TAFE CESLIM

1IF A REG=0 ROTH CHECE=IMS
MATCH: GET A NEW RECORD

6 REG <2 O, CHECESIHS DIFFFER
SET FRROR FLAG,

NIRLZ VARIARILE 7. = 1

RETHIRMN

A REG <= 0. ENN RECORD
TAFE TESUM——484 REG

ADD CESIUM STOREDR TN
MEMORY TO TAFE CESLM
IF A REG=0 CHECKESIMS

REDT

MATICH

A REG=0.
RETURN

CHECESHMS MATCH

e

SOT0 AEERERBLER. REV-A Q&/04/79
A= T0 3070 UTTLITY SURROUTINES
ROVSPE - GDETETT

. FaGGE "RITAFPE - GETRITS

TOGEETBIT S RECETYES 1 BIT IMTO BIT 7 GF The ¥ opbds il v AF
i E REGISTER HIUET BE SET To4 O BOEFORE A CHer TEr 07w BE
5 FORRMETD . GERETRIT I CALLED & TIMES BY TiHbE R b

T BUBROUTINE TH ORDER TO RELCIEVE AN S RIT CHaRA rR TR HEETH
s £ REGIZTER. CGETRITS I ALZO REPEATEDLY CAly vy D br TR
3 "ROTAFE- FROGRAM SYNCHRONTIZATION JOOF IN SRIER 00 0004 TF
s THE START OF RECORDO CHARGLTER (<745 7).,

fOINVERTED DATA AND CLOCGE FLE SES ARE RECETWFED 07 Wer S dra 850
t o wWbERN ZR=0 DATOATLGCE ARE PRESFAT O

s HETRITY ASSUMES THAT F3 OIS POINTING T 03 RBATE DR i fara b
3 ACRATCHFAD RAM (R00dINT . A O s THE SHBROLD et ENT T B

PG TRIT O RRROUTIHE FORAMETERS

D S OHDLYD = 57 SODELAY T R TART OF FLERAT ARELF

SOOENT Ts THE SAMPLE COUNT (# OF AMPLES
TaEEN BEFORE A 707 DATA BIT 15 RETURARDD

LI]

SFELE SET SAMPLE COLNT =&

SEizd

GETRIT: LI R.=1Z
=T Ay SLOLNT . P

aa

SECE O GETCLE: LI A S WATT FOR CiLOdk FLLEF QN

&R THPUT

T)

1953 R 2, =004 § #aPULEE Fressaxssx
15t s ANT =, =0FE 3 OREBARBAAAFEREERF LR

e
mT

MOESE OFF SR
WARIT UNTIL SEBEOGOFS Litl

TN A, =070
JOFE BHiNT GETCLE

Y]
—
o
s
T
T

~ow -

L B

CEOCE PLNLSE T3 PRESENT
BELAY TO STmRT GF

SAMPLE TIME

SAMPLE INVERTED RIT Op Rk

SECHE D437 (MK AL =HIM Y1
SFFD Z2O0F72F JER DELAY

E¥L JERTT BT BPTT 3

SFTeD Oh SMFL L AL S

1333 R S, =00 s #EHFLULEE FZasezsas
1313 ANT} 5, =0F7] HHRBENRERTRANEE R EY

SFLL 420 ANL A, =000

SFDE A005 12¥4 RETI TEET SAMFLED BIT =0 (R |

-~

SAMFLED RIT=0
DECREMEMT SAMPLE COUNT &
CONTINLUE TF COLNT -6

ZFDS ZROS SMFLO! .o A SOOUNT - P
SFLD7 JCF7 BNT SMPL

an dh s

FINAL VALIIE OF LATA BRIT=D
LA CHARAGTER

'L Y

SFO% 40 RETO: LK R E

H-21

2070 ARSEFMBLER S REV-A Q&/705779
ASEDTO =070 LUTILITY SURROUTINES
ROTAFE - GETERIT

INTO THE A REG & ZRIFT \
1T RIGHT BY 1 RIT.
RIT 7 =0 RY OFFALLT v

SFDA ST SR A

ME aN e

FIIT CHAR INTO FE RFG
RETLIRHN

SFOR 43 .o E-A
EFDE B RET

YL Y |

FImnal, VAlLLIE OF I'wifi RIT=:
WAIT UNTIL SB=1
(NATA FLULSE SOES AWAY)

EETIN O RET1: .13 A, =
SETE Dazo ANT! A, =020
ZFFO ACFR Rz RET1

TR Y)

LOAD CHARACTER
INTO THE A FES 5 SHTFT
IT RIGHT BY 1 ETT

SET RIT 7 =1

= 40 1.1 A.F
=1 = (2}

= (1= &, =R

~E gE uE ue

FUT CHAR INTO E REG
RETURN

Lt i} 4[':: |U F: k] p‘
BEET ST RFET

ue oy

H-22

SO70 SGRLEMRBLER S REV-6 Q470477
AR T SOT70 UTILITY SURBROUTINES
RITAFF - ROVOHR

- FAGE TRIOTAFE — ROVCHR-

3 TRIOVIECHAT RECEIVES ONE & BIT CHARG TER O TNTS gHY 7 FR LS &R
3OMND THE B REQISTER.

3 REVEOHR S AZZLMES THAT FITR B3 75 FOINTING T:o 3 ®Hy i g
5 AVATLABLE SCRATOHFAL RAM (ROCVDTRI . ANTL VAL LS THE SHRE T [t
$ CGETRITY 2 TIMES IN ORDER T RECEIVE & 0 GilFLETF & B0
5 CHARACTER.

2 PARAGMETERT FOR "ROVOHR S TNEL LIDIE

3 RCVECTR IS THE CUNTER WHLOH Cdasd o
$ THF RNUMRFR OF FRI1TS RECFIVET

SETORTT OGOk =

“a

N RN T FITWVTHIS LT B, =003

A Lkon =1 fa. RCVETR 13

CLEAR THE B REG WHERE
CH&ER WILL BE O FOR L

SEEL R 1.0 [YETy)
SEFE A L.I £,4

-

SFEF O UEF LOOFETs JER GETRIT $ OGET L OBIT OINTOOE RES
SFET VRO [iL11 ALRCOVLTR-F2 3 DECREMENT RIT ConNT

HFF4 FLOF BN L CasP 2 CONTITMUE UNT UL T 0 iNT =0

e

GEEA A0 LIt AL F FLIT CHAR TrTiE & 5 s

~n

=sFET7ORL RET K THRR

o . L INCLD DELLAY

e

H-23

=070 SESEMRLER REV-A D&/QL/T
AREROTO GOT0 UTTLITY SUEROUTINES
GELOY

. FAGE “DELAY

s “DFiAY" GENFRATES A TNELAY BY DECREMENTIMIG & DIFLEY FiddNT ‘
$ WHICH HAS BEEN PREVIGUSLY ULDJADED INTO THE A REGTATER.
TOWHEN EXECUTED FRM EXTERNAL MEMORY. THE TOTAL TT™E §FLAY
s (LY rLES) GEMERATED BY THE SURROUTIMNE, TMCLL: TG THE
3 PREVICHESLY EXECUTED INSTRUCTIONS “JU5R OEL &Y & LT
T AL=NELAYCOUNT . IS5 AS FOLILCW=S:
§ TOTAL DELAY = 29 + 14 # DELAYCOUNT
i WHFRE DFLAYCOUNT RANGES FROM 1 TO 2S5,

AFFS PO OELAY: SLB B, =01 LDECREMENT FREVIGUSLY

LO&NED DELAY COONT
LOOF UNTIL ST = O

- e

2FFR 70FC BNZ DELAY
SFEEL SO RET 3 RETLIRN

el OGO < END

H-24

2OTO ASEEMR FR
OEESC Ty o700 T

ADRMEG =EL)
Rito FNEL o=
CESHE 000
LONVY 2E&D =
| e CHOOF
OTHRFC =UDA
Filk Ly O0SF
GETRYT FFELT
b vHOIOF
THRTT K) B
PTG R ODOS
Lionrd 2R
MoN R
WmEET ST
W RERF
FRINT =E7}
ROVOHR SFFER
RECTET 2NFC
FET SEOD
SERR SFRA
SMALG SRS #
SZTIORE 2E&NT ‘
HRTHPFE SESF #

RE'~f
ITY R4

ASCTLD
BASOOG
COMBYT
-
NECTNT
ENDDLY
GEID
GET b
HIL Y3
L1
LEZSS
LOnFED
N
NOTRT
WNYT.
FRT>
ROVCTR
RECTYF
SCOUNMNT
SHTFT
SNTIL DR
SYNCLF
X

N3 FRROR LIMNE=

SOURCE CHECE ZUM
ORAECT MHECKZUM
11 ASSYLANG, SR

THFUIT FILE
LISTING FILE
ORAECT FILFE

FEF.:
ODAS

tou

QA /ORI

= el]
onas
sE7
O0ONa
SF4E
Q01A
SESA
=F A
QN
SEEOA
SECE
SEFF
(alnlnt:|
20EA
RFDY
BETF
(a1a1n)]
QOG0T
(HO05
SF2F
SEA4
aF &F
QOZE

BT = VI S o § BN

AT}
BRITIN Y
CONNTIF
fi
DELAY
ERET
GECD
GETNTA
RE X Fiva
LT3

| CF
LET1IO
NF
METOF L
NXTE: T
FRTS
RNTAFE
REFEAT
SENDG
SHIFT1
SRAM
WRZCHAR
Y

ON LITSO70

1LASSYILANG ST ON UT2070
1 ARSYLANG. LM ON LUTS070

H-25

mE24
QOSE
SESO
D00 &
oFF2
SFRA
Ov=3
=HESF
SRERF

HES=A
QOO0
0 5 - o
=Irr:
A
BF &S
SFAA
SF AL
sSEZS
FFOQ
BFZA
QO30

ATOF
BRYTCOR
CONY S
Di
OREC

FLOE) &Y

GETRIT

HTES

HIFE oy
LIRCHET
L EnFE
MEESLIM
NIYTES
ST
riFti v |
Figo=E
RECORD
RETO
SFNDH
SMPE.
STANR
WRICTR
r4

aF s
(s 13Ty I
SF
e et
sFET
FFED
SR

Sl
Vi
5 Y M
SFFE
Q0 !
B TR
HEL
AN
E=i M
SFEE
aFn
=F a4
SFn:
QOO
D004
Q0=

